ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlrng Unicode version

Theorem rnglidlrng 13814
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
Assertion
Ref Expression
rnglidlrng  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )

Proof of Theorem rnglidlrng
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 13289 . . . 4  |-  ( R  e. Rng  ->  R  e.  Abel )
213ad2ant1 1020 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
3 simp3 1001 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  (SubGrp `  R ) )
4 rnglidlabl.i . . . 4  |-  I  =  ( Rs  U )
54subgabl 13269 . . 3  |-  ( ( R  e.  Abel  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
62, 3, 5syl2anc 411 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
7 eqid 2189 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
87subg0cl 13121 . . 3  |-  ( U  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  U
)
9 rnglidlabl.l . . . 4  |-  L  =  (LIdeal `  R )
109, 4, 7rnglidlmsgrp 13813 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  ( 0g `  R )  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
118, 10syl3an3 1284 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  (mulGrp `  I
)  e. Smgrp )
12 simpl1 1002 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  R  e. Rng )
139, 4lidlssbas 13793 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3169 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1513sseld 3169 . . . . . . . 8  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
1613sseld 3169 . . . . . . . 8  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1714, 15, 163anim123d 1330 . . . . . . 7  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
18173ad2ant2 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
)  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1918imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )
20 eqid 2189 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21 eqid 2189 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
22 eqid 2189 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2320, 21, 22rngdi 13294 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2412, 19, 23syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2520, 21, 22rngdir 13295 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
2612, 19, 25syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
27 simp2 1000 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  L )
28 simp1 999 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e. Rng )
294, 22ressmulrg 12656 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
3027, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  R )  =  ( .r `  I ) )
3130eqcomd 2195 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  I )  =  ( .r `  R ) )
32 eqidd 2190 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  a  =  a )
334a1i 9 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  =  ( Rs  U ) )
34 eqidd 2190 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
3533, 34, 27, 28ressplusgd 12640 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  I ) )
3635eqcomd 2195 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  I )  =  ( +g  `  R ) )
3736oveqd 5913 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( +g  `  I ) c )  =  ( b ( +g  `  R
) c ) )
3831, 32, 37oveq123d 5917 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( a ( .r
`  R ) ( b ( +g  `  R
) c ) ) )
3931oveqd 5913 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) b )  =  ( a ( .r
`  R ) b ) )
4031oveqd 5913 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) c )  =  ( a ( .r
`  R ) c ) )
4136, 39, 40oveq123d 5917 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
4238, 41eqeq12d 2204 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  <->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) ) )
4336oveqd 5913 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( +g  `  I ) b )  =  ( a ( +g  `  R
) b ) )
44 eqidd 2190 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  c  =  c )
4531, 43, 44oveq123d 5917 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  R ) b ) ( .r `  R
) c ) )
4631oveqd 5913 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( .r `  I
) c )  =  ( b ( .r
`  R ) c ) )
4736, 40, 46oveq123d 5917 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
4845, 47eqeq12d 2204 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) )  <-> 
( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
4942, 48anbi12d 473 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) )  <->  ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5049adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5124, 26, 50mpbir2and 946 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) ) )
5251ralrimivvva 2573 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) )
53 eqid 2189 . . 3  |-  ( Base `  I )  =  (
Base `  I )
54 eqid 2189 . . 3  |-  (mulGrp `  I )  =  (mulGrp `  I )
55 eqid 2189 . . 3  |-  ( +g  `  I )  =  ( +g  `  I )
56 eqid 2189 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
5753, 54, 55, 56isrng 13288 . 2  |-  ( I  e. Rng 
<->  ( I  e.  Abel  /\  (mulGrp `  I )  e. Smgrp  /\  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) ) )
586, 11, 52, 57syl3anbrc 1183 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   ` cfv 5235  (class class class)co 5896   Basecbs 12512   ↾s cress 12513   +g cplusg 12589   .rcmulr 12590   0gc0g 12761  Smgrpcsgrp 12864  SubGrpcsubg 13106   Abelcabl 13224  mulGrpcmgp 13274  Rngcrng 13286  LIdealclidl 13783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-pre-ltirr 7953  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-ltxr 8027  df-inn 8950  df-2 9008  df-3 9009  df-4 9010  df-5 9011  df-6 9012  df-7 9013  df-8 9014  df-ndx 12515  df-slot 12516  df-base 12518  df-sets 12519  df-iress 12520  df-plusg 12602  df-mulr 12603  df-sca 12605  df-vsca 12606  df-ip 12607  df-0g 12763  df-mgm 12832  df-sgrp 12865  df-mnd 12878  df-grp 12948  df-subg 13109  df-cmn 13225  df-abl 13226  df-mgp 13275  df-rng 13287  df-lssm 13669  df-sra 13751  df-rgmod 13752  df-lidl 13785
This theorem is referenced by:  rng2idlsubgsubrng  13835
  Copyright terms: Public domain W3C validator