ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlrng Unicode version

Theorem rnglidlrng 14456
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
Assertion
Ref Expression
rnglidlrng  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )

Proof of Theorem rnglidlrng
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 13893 . . . 4  |-  ( R  e. Rng  ->  R  e.  Abel )
213ad2ant1 1042 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
3 simp3 1023 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  (SubGrp `  R ) )
4 rnglidlabl.i . . . 4  |-  I  =  ( Rs  U )
54subgabl 13864 . . 3  |-  ( ( R  e.  Abel  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
62, 3, 5syl2anc 411 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
7 eqid 2229 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
87subg0cl 13714 . . 3  |-  ( U  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  U
)
9 rnglidlabl.l . . . 4  |-  L  =  (LIdeal `  R )
109, 4, 7rnglidlmsgrp 14455 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  ( 0g `  R )  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
118, 10syl3an3 1306 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  (mulGrp `  I
)  e. Smgrp )
12 simpl1 1024 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  R  e. Rng )
139, 4lidlssbas 14435 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3223 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1513sseld 3223 . . . . . . . 8  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
1613sseld 3223 . . . . . . . 8  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1714, 15, 163anim123d 1353 . . . . . . 7  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
18173ad2ant2 1043 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
)  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1918imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )
20 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21 eqid 2229 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
22 eqid 2229 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2320, 21, 22rngdi 13898 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2412, 19, 23syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2520, 21, 22rngdir 13899 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
2612, 19, 25syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
27 simp2 1022 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  L )
28 simp1 1021 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e. Rng )
294, 22ressmulrg 13173 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
3027, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  R )  =  ( .r `  I ) )
3130eqcomd 2235 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  I )  =  ( .r `  R ) )
32 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  a  =  a )
334a1i 9 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  =  ( Rs  U ) )
34 eqidd 2230 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
3533, 34, 27, 28ressplusgd 13157 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  I ) )
3635eqcomd 2235 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  I )  =  ( +g  `  R ) )
3736oveqd 6017 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( +g  `  I ) c )  =  ( b ( +g  `  R
) c ) )
3831, 32, 37oveq123d 6021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( a ( .r
`  R ) ( b ( +g  `  R
) c ) ) )
3931oveqd 6017 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) b )  =  ( a ( .r
`  R ) b ) )
4031oveqd 6017 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) c )  =  ( a ( .r
`  R ) c ) )
4136, 39, 40oveq123d 6021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
4238, 41eqeq12d 2244 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  <->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) ) )
4336oveqd 6017 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( +g  `  I ) b )  =  ( a ( +g  `  R
) b ) )
44 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  c  =  c )
4531, 43, 44oveq123d 6021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  R ) b ) ( .r `  R
) c ) )
4631oveqd 6017 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( .r `  I
) c )  =  ( b ( .r
`  R ) c ) )
4736, 40, 46oveq123d 6021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
4845, 47eqeq12d 2244 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) )  <-> 
( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
4942, 48anbi12d 473 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) )  <->  ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5049adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5124, 26, 50mpbir2and 950 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) ) )
5251ralrimivvva 2613 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) )
53 eqid 2229 . . 3  |-  ( Base `  I )  =  (
Base `  I )
54 eqid 2229 . . 3  |-  (mulGrp `  I )  =  (mulGrp `  I )
55 eqid 2229 . . 3  |-  ( +g  `  I )  =  ( +g  `  I )
56 eqid 2229 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
5753, 54, 55, 56isrng 13892 . 2  |-  ( I  e. Rng 
<->  ( I  e.  Abel  /\  (mulGrp `  I )  e. Smgrp  /\  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) ) )
586, 11, 52, 57syl3anbrc 1205 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   ` cfv 5317  (class class class)co 6000   Basecbs 13027   ↾s cress 13028   +g cplusg 13105   .rcmulr 13106   0gc0g 13284  Smgrpcsgrp 13429  SubGrpcsubg 13699   Abelcabl 13817  mulGrpcmgp 13878  Rngcrng 13890  LIdealclidl 14425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-sca 13121  df-vsca 13122  df-ip 13123  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-subg 13702  df-cmn 13818  df-abl 13819  df-mgp 13879  df-rng 13891  df-lssm 14311  df-sra 14393  df-rgmod 14394  df-lidl 14427
This theorem is referenced by:  rng2idlsubgsubrng  14478
  Copyright terms: Public domain W3C validator