ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlrng Unicode version

Theorem rnglidlrng 14345
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
Assertion
Ref Expression
rnglidlrng  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )

Proof of Theorem rnglidlrng
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 13782 . . . 4  |-  ( R  e. Rng  ->  R  e.  Abel )
213ad2ant1 1021 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
3 simp3 1002 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  (SubGrp `  R ) )
4 rnglidlabl.i . . . 4  |-  I  =  ( Rs  U )
54subgabl 13753 . . 3  |-  ( ( R  e.  Abel  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
62, 3, 5syl2anc 411 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
7 eqid 2206 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
87subg0cl 13603 . . 3  |-  ( U  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  U
)
9 rnglidlabl.l . . . 4  |-  L  =  (LIdeal `  R )
109, 4, 7rnglidlmsgrp 14344 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  ( 0g `  R )  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
118, 10syl3an3 1285 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  (mulGrp `  I
)  e. Smgrp )
12 simpl1 1003 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  R  e. Rng )
139, 4lidlssbas 14324 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3196 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1513sseld 3196 . . . . . . . 8  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
1613sseld 3196 . . . . . . . 8  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1714, 15, 163anim123d 1332 . . . . . . 7  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
18173ad2ant2 1022 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
)  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1918imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )
20 eqid 2206 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21 eqid 2206 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
22 eqid 2206 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2320, 21, 22rngdi 13787 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2412, 19, 23syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2520, 21, 22rngdir 13788 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
2612, 19, 25syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
27 simp2 1001 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  L )
28 simp1 1000 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e. Rng )
294, 22ressmulrg 13062 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
3027, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  R )  =  ( .r `  I ) )
3130eqcomd 2212 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  I )  =  ( .r `  R ) )
32 eqidd 2207 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  a  =  a )
334a1i 9 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  =  ( Rs  U ) )
34 eqidd 2207 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
3533, 34, 27, 28ressplusgd 13046 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  I ) )
3635eqcomd 2212 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  I )  =  ( +g  `  R ) )
3736oveqd 5979 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( +g  `  I ) c )  =  ( b ( +g  `  R
) c ) )
3831, 32, 37oveq123d 5983 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( a ( .r
`  R ) ( b ( +g  `  R
) c ) ) )
3931oveqd 5979 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) b )  =  ( a ( .r
`  R ) b ) )
4031oveqd 5979 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) c )  =  ( a ( .r
`  R ) c ) )
4136, 39, 40oveq123d 5983 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
4238, 41eqeq12d 2221 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  <->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) ) )
4336oveqd 5979 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( +g  `  I ) b )  =  ( a ( +g  `  R
) b ) )
44 eqidd 2207 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  c  =  c )
4531, 43, 44oveq123d 5983 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  R ) b ) ( .r `  R
) c ) )
4631oveqd 5979 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( .r `  I
) c )  =  ( b ( .r
`  R ) c ) )
4736, 40, 46oveq123d 5983 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
4845, 47eqeq12d 2221 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) )  <-> 
( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
4942, 48anbi12d 473 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) )  <->  ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5049adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5124, 26, 50mpbir2and 947 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) ) )
5251ralrimivvva 2590 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) )
53 eqid 2206 . . 3  |-  ( Base `  I )  =  (
Base `  I )
54 eqid 2206 . . 3  |-  (mulGrp `  I )  =  (mulGrp `  I )
55 eqid 2206 . . 3  |-  ( +g  `  I )  =  ( +g  `  I )
56 eqid 2206 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
5753, 54, 55, 56isrng 13781 . 2  |-  ( I  e. Rng 
<->  ( I  e.  Abel  /\  (mulGrp `  I )  e. Smgrp  /\  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) ) )
586, 11, 52, 57syl3anbrc 1184 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   ` cfv 5285  (class class class)co 5962   Basecbs 12917   ↾s cress 12918   +g cplusg 12994   .rcmulr 12995   0gc0g 13173  Smgrpcsgrp 13318  SubGrpcsubg 13588   Abelcabl 13706  mulGrpcmgp 13767  Rngcrng 13779  LIdealclidl 14314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-pre-ltirr 8067  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-ltxr 8142  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-ndx 12920  df-slot 12921  df-base 12923  df-sets 12924  df-iress 12925  df-plusg 13007  df-mulr 13008  df-sca 13010  df-vsca 13011  df-ip 13012  df-0g 13175  df-mgm 13273  df-sgrp 13319  df-mnd 13334  df-grp 13420  df-subg 13591  df-cmn 13707  df-abl 13708  df-mgp 13768  df-rng 13780  df-lssm 14200  df-sra 14282  df-rgmod 14283  df-lidl 14316
This theorem is referenced by:  rng2idlsubgsubrng  14367
  Copyright terms: Public domain W3C validator