ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlrng Unicode version

Theorem rnglidlrng 14130
Description: A (left) ideal of a non-unital ring is a non-unital ring. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  U  e.  (SubGrp `  R ) is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
Assertion
Ref Expression
rnglidlrng  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )

Proof of Theorem rnglidlrng
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngabl 13567 . . . 4  |-  ( R  e. Rng  ->  R  e.  Abel )
213ad2ant1 1020 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e.  Abel )
3 simp3 1001 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  (SubGrp `  R ) )
4 rnglidlabl.i . . . 4  |-  I  =  ( Rs  U )
54subgabl 13538 . . 3  |-  ( ( R  e.  Abel  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
62, 3, 5syl2anc 411 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e.  Abel )
7 eqid 2196 . . . 4  |-  ( 0g
`  R )  =  ( 0g `  R
)
87subg0cl 13388 . . 3  |-  ( U  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  U
)
9 rnglidlabl.l . . . 4  |-  L  =  (LIdeal `  R )
109, 4, 7rnglidlmsgrp 14129 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  ( 0g `  R )  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
118, 10syl3an3 1284 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  (mulGrp `  I
)  e. Smgrp )
12 simpl1 1002 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  R  e. Rng )
139, 4lidlssbas 14109 . . . . . . . . 9  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
1413sseld 3183 . . . . . . . 8  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
1513sseld 3183 . . . . . . . 8  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
1613sseld 3183 . . . . . . . 8  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1714, 15, 163anim123d 1330 . . . . . . 7  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
18173ad2ant2 1021 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
)  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1918imp 124 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )
20 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
21 eqid 2196 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
22 eqid 2196 . . . . . 6  |-  ( .r
`  R )  =  ( .r `  R
)
2320, 21, 22rngdi 13572 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2412, 19, 23syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
a ( .r `  R ) ( b ( +g  `  R
) c ) )  =  ( ( a ( .r `  R
) b ) ( +g  `  R ) ( a ( .r
`  R ) c ) ) )
2520, 21, 22rngdir 13573 . . . . 5  |-  ( ( R  e. Rng  /\  (
a  e.  ( Base `  R )  /\  b  e.  ( Base `  R
)  /\  c  e.  ( Base `  R )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
2612, 19, 25syl2anc 411 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( +g  `  R ) b ) ( .r `  R
) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
27 simp2 1000 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  U  e.  L )
28 simp1 999 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  R  e. Rng )
294, 22ressmulrg 12847 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
3027, 28, 29syl2anc 411 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  R )  =  ( .r `  I ) )
3130eqcomd 2202 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( .r `  I )  =  ( .r `  R ) )
32 eqidd 2197 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  a  =  a )
334a1i 9 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  =  ( Rs  U ) )
34 eqidd 2197 . . . . . . . . . . 11  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  R ) )
3533, 34, 27, 28ressplusgd 12831 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  R )  =  ( +g  `  I ) )
3635eqcomd 2202 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( +g  `  I )  =  ( +g  `  R ) )
3736oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( +g  `  I ) c )  =  ( b ( +g  `  R
) c ) )
3831, 32, 37oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( a ( .r
`  R ) ( b ( +g  `  R
) c ) ) )
3931oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) b )  =  ( a ( .r
`  R ) b ) )
4031oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( .r `  I
) c )  =  ( a ( .r
`  R ) c ) )
4136, 39, 40oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) )
4238, 41eqeq12d 2211 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  <->  ( a
( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) ) ) )
4336oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( a
( +g  `  I ) b )  =  ( a ( +g  `  R
) b ) )
44 eqidd 2197 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  c  =  c )
4531, 43, 44oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  R ) b ) ( .r `  R
) c ) )
4631oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( b
( .r `  I
) c )  =  ( b ( .r
`  R ) c ) )
4736, 40, 46oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) )  =  ( ( a ( .r `  R ) c ) ( +g  `  R ) ( b ( .r `  R
) c ) ) )
4845, 47eqeq12d 2211 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) )  <-> 
( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) )
4942, 48anbi12d 473 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  ( (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) )  <->  ( ( a ( .r `  R
) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R ) ( a ( .r `  R
) c ) )  /\  ( ( a ( +g  `  R
) b ) ( .r `  R ) c )  =  ( ( a ( .r
`  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5049adantr 276 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( ( a ( .r `  I ) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I
) ( a ( .r `  I ) c ) )  /\  ( ( a ( +g  `  I ) b ) ( .r
`  I ) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) )  <-> 
( ( a ( .r `  R ) ( b ( +g  `  R ) c ) )  =  ( ( a ( .r `  R ) b ) ( +g  `  R
) ( a ( .r `  R ) c ) )  /\  ( ( a ( +g  `  R ) b ) ( .r
`  R ) c )  =  ( ( a ( .r `  R ) c ) ( +g  `  R
) ( b ( .r `  R ) c ) ) ) ) )
5124, 26, 50mpbir2and 946 . . 3  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R
) )  /\  (
a  e.  ( Base `  I )  /\  b  e.  ( Base `  I
)  /\  c  e.  ( Base `  I )
) )  ->  (
( a ( .r
`  I ) ( b ( +g  `  I
) c ) )  =  ( ( a ( .r `  I
) b ) ( +g  `  I ) ( a ( .r
`  I ) c ) )  /\  (
( a ( +g  `  I ) b ) ( .r `  I
) c )  =  ( ( a ( .r `  I ) c ) ( +g  `  I ) ( b ( .r `  I
) c ) ) ) )
5251ralrimivvva 2580 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) )
53 eqid 2196 . . 3  |-  ( Base `  I )  =  (
Base `  I )
54 eqid 2196 . . 3  |-  (mulGrp `  I )  =  (mulGrp `  I )
55 eqid 2196 . . 3  |-  ( +g  `  I )  =  ( +g  `  I )
56 eqid 2196 . . 3  |-  ( .r
`  I )  =  ( .r `  I
)
5753, 54, 55, 56isrng 13566 . 2  |-  ( I  e. Rng 
<->  ( I  e.  Abel  /\  (mulGrp `  I )  e. Smgrp  /\  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) ( b ( +g  `  I ) c ) )  =  ( ( a ( .r `  I ) b ) ( +g  `  I ) ( a ( .r `  I
) c ) )  /\  ( ( a ( +g  `  I
) b ) ( .r `  I ) c )  =  ( ( a ( .r
`  I ) c ) ( +g  `  I
) ( b ( .r `  I ) c ) ) ) ) )
586, 11, 52, 57syl3anbrc 1183 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  U  e.  (SubGrp `  R )
)  ->  I  e. Rng )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   .rcmulr 12781   0gc0g 12958  Smgrpcsgrp 13103  SubGrpcsubg 13373   Abelcabl 13491  mulGrpcmgp 13552  Rngcrng 13564  LIdealclidl 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-subg 13376  df-cmn 13492  df-abl 13493  df-mgp 13553  df-rng 13565  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101
This theorem is referenced by:  rng2idlsubgsubrng  14152
  Copyright terms: Public domain W3C validator