ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovdirg Unicode version

Theorem caovdirg 6124
Description: Convert an operation reverse distributive law to class notation. (Contributed by Mario Carneiro, 19-Oct-2014.)
Hypothesis
Ref Expression
caovdirg.1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )
Assertion
Ref Expression
caovdirg  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  K ) )  -> 
( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    ph, x, y, z   
x, F, y, z   
x, G, y, z   
x, H, y, z   
x, K, y, z   
x, S, y, z

Proof of Theorem caovdirg
StepHypRef Expression
1 caovdirg.1 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S  /\  z  e.  K ) )  -> 
( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )
21ralrimivvva 2589 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  A. z  e.  K  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) ) )
3 oveq1 5951 . . . . 5  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
43oveq1d 5959 . . . 4  |-  ( x  =  A  ->  (
( x F y ) G z )  =  ( ( A F y ) G z ) )
5 oveq1 5951 . . . . 5  |-  ( x  =  A  ->  (
x G z )  =  ( A G z ) )
65oveq1d 5959 . . . 4  |-  ( x  =  A  ->  (
( x G z ) H ( y G z ) )  =  ( ( A G z ) H ( y G z ) ) )
74, 6eqeq12d 2220 . . 3  |-  ( x  =  A  ->  (
( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) )  <->  ( ( A F y ) G z )  =  ( ( A G z ) H ( y G z ) ) ) )
8 oveq2 5952 . . . . 5  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
98oveq1d 5959 . . . 4  |-  ( y  =  B  ->  (
( A F y ) G z )  =  ( ( A F B ) G z ) )
10 oveq1 5951 . . . . 5  |-  ( y  =  B  ->  (
y G z )  =  ( B G z ) )
1110oveq2d 5960 . . . 4  |-  ( y  =  B  ->  (
( A G z ) H ( y G z ) )  =  ( ( A G z ) H ( B G z ) ) )
129, 11eqeq12d 2220 . . 3  |-  ( y  =  B  ->  (
( ( A F y ) G z )  =  ( ( A G z ) H ( y G z ) )  <->  ( ( A F B ) G z )  =  ( ( A G z ) H ( B G z ) ) ) )
13 oveq2 5952 . . . 4  |-  ( z  =  C  ->  (
( A F B ) G z )  =  ( ( A F B ) G C ) )
14 oveq2 5952 . . . . 5  |-  ( z  =  C  ->  ( A G z )  =  ( A G C ) )
15 oveq2 5952 . . . . 5  |-  ( z  =  C  ->  ( B G z )  =  ( B G C ) )
1614, 15oveq12d 5962 . . . 4  |-  ( z  =  C  ->  (
( A G z ) H ( B G z ) )  =  ( ( A G C ) H ( B G C ) ) )
1713, 16eqeq12d 2220 . . 3  |-  ( z  =  C  ->  (
( ( A F B ) G z )  =  ( ( A G z ) H ( B G z ) )  <->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) ) )
187, 12, 17rspc3v 2893 . 2  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  K )  ->  ( A. x  e.  S  A. y  e.  S  A. z  e.  K  ( ( x F y ) G z )  =  ( ( x G z ) H ( y G z ) )  ->  ( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) ) )
192, 18mpan9 281 1  |-  ( (
ph  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  K ) )  -> 
( ( A F B ) G C )  =  ( ( A G C ) H ( B G C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   A.wral 2484  (class class class)co 5944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-iota 5232  df-fv 5279  df-ov 5947
This theorem is referenced by:  caovdird  6125  caovlem2d  6139  srgdilem  13731  ringdilem  13774
  Copyright terms: Public domain W3C validator