ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp Unicode version

Theorem rnglidlmsgrp 14303
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmsgrp  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )

Proof of Theorem rnglidlmsgrp
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 rnglidlabl.i . . 3  |-  I  =  ( Rs  U )
3 rnglidlabl.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3rnglidlmmgm 14302 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
5 eqid 2206 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
65rngmgp 13742 . . . . . . . . 9  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
763ad2ant1 1021 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  R )  e. Smgrp )
87adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  (mulGrp `  R )  e. Smgrp )
91, 2lidlssbas 14283 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
109sseld 3193 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
119sseld 3193 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
129sseld 3193 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1310, 11, 123anim123d 1332 . . . . . . . . . . 11  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
14133ad2ant2 1022 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1514imp 124 . . . . . . . . 9  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
1615simp1d 1012 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  R )
)
17 eqid 2206 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
185, 17mgpbasg 13732 . . . . . . . . . 10  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
19183ad2ant1 1021 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
2116, 20eleqtrd 2285 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  (mulGrp `  R
) ) )
2215simp2d 1013 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  R )
)
2322, 20eleqtrd 2285 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  (mulGrp `  R
) ) )
2415simp3d 1014 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  R )
)
2524, 20eleqtrd 2285 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  (mulGrp `  R
) ) )
26 eqid 2206 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
27 eqid 2206 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
2826, 27sgrpass 13284 . . . . . . 7  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( a  e.  ( Base `  (mulGrp `  R ) )  /\  b  e.  ( Base `  (mulGrp `  R )
)  /\  c  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
298, 21, 23, 25, 28syl13anc 1252 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
30 eqid 2206 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30mgpplusgg 13730 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
32313ad2ant1 1021 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3332adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3433oveqd 5968 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) b )  =  ( a ( +g  `  (mulGrp `  R ) ) b ) )
35 eqidd 2207 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  =  c )
3633, 34, 35oveq123d 5972 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( ( a ( +g  `  (mulGrp `  R )
) b ) ( +g  `  (mulGrp `  R ) ) c ) )
37 eqidd 2207 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  =  a )
3833oveqd 5968 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( b ( .r `  R ) c )  =  ( b ( +g  `  (mulGrp `  R ) ) c ) )
3933, 37, 38oveq123d 5972 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) ( b ( .r
`  R ) c ) )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
4029, 36, 393eqtr4d 2249 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) )
41 simp2 1001 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
42 simp1 1000 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
432, 30ressmulrg 13021 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
4443eqcomd 2212 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  I )  =  ( .r `  R ) )
4544oveqd 5968 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
46 eqidd 2207 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  c  =  c )
4744, 45, 46oveq123d 5972 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( .r `  R
) b ) ( .r `  R ) c ) )
48 eqidd 2207 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  a  =  a )
4944oveqd 5968 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
5044, 48, 49oveq123d 5972 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( .r `  R ) ( b ( .r
`  R ) c ) ) )
5147, 50eqeq12d 2221 . . . . . . 7  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5241, 42, 51syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) ) )
5440, 53mpbird 167 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
5554ralrimivvva 2590 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
56 ressex 12941 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
5742, 41, 56syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Rs  U )  e.  _V )
582, 57eqeltrid 2293 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
59 eqid 2206 . . . . . 6  |-  (mulGrp `  I )  =  (mulGrp `  I )
60 eqid 2206 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
6159, 60mgpbasg 13732 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
6258, 61syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
63 eqid 2206 . . . . . . . . . 10  |-  ( .r
`  I )  =  ( .r `  I
)
6459, 63mgpplusgg 13730 . . . . . . . . 9  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6558, 64syl 14 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6665oveqd 5968 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
67 eqidd 2207 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  c  =  c )
6865, 66, 67oveq123d 5972 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c ) )
69 eqidd 2207 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  a  =  a )
7065oveqd 5968 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
b ( .r `  I ) c )  =  ( b ( +g  `  (mulGrp `  I ) ) c ) )
7165, 69, 70oveq123d 5972 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
7268, 71eqeq12d 2221 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7362, 72raleqbidv 2719 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r
`  I ) c ) )  <->  A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7462, 73raleqbidv 2719 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I ) ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7562, 74raleqbidv 2719 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7655, 75mpbid 147 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  (mulGrp `  I ) ) A. b  e.  ( Base `  (mulGrp `  I )
) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
77 eqid 2206 . . 3  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
78 eqid 2206 . . 3  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
7977, 78issgrp 13279 . 2  |-  ( (mulGrp `  I )  e. Smgrp  <->  ( (mulGrp `  I )  e. Mgm  /\  A. a  e.  ( Base `  (mulGrp `  I )
) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
804, 76, 79sylanbrc 417 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   _Vcvv 2773   ` cfv 5276  (class class class)co 5951   Basecbs 12876   ↾s cress 12877   +g cplusg 12953   .rcmulr 12954   0gc0g 13132  Mgmcmgm 13230  Smgrpcsgrp 13277  mulGrpcmgp 13726  Rngcrng 13738  LIdealclidl 14273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-iress 12884  df-plusg 12966  df-mulr 12967  df-sca 12969  df-vsca 12970  df-ip 12971  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-abl 13667  df-mgp 13727  df-rng 13739  df-lssm 14159  df-sra 14241  df-rgmod 14242  df-lidl 14275
This theorem is referenced by:  rnglidlrng  14304
  Copyright terms: Public domain W3C validator