ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp Unicode version

Theorem rnglidlmsgrp 14469
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmsgrp  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )

Proof of Theorem rnglidlmsgrp
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 rnglidlabl.i . . 3  |-  I  =  ( Rs  U )
3 rnglidlabl.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3rnglidlmmgm 14468 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
5 eqid 2229 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
65rngmgp 13907 . . . . . . . . 9  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
763ad2ant1 1042 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  R )  e. Smgrp )
87adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  (mulGrp `  R )  e. Smgrp )
91, 2lidlssbas 14449 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
109sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
119sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
129sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1310, 11, 123anim123d 1353 . . . . . . . . . . 11  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
14133ad2ant2 1043 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1514imp 124 . . . . . . . . 9  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
1615simp1d 1033 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  R )
)
17 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
185, 17mgpbasg 13897 . . . . . . . . . 10  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
19183ad2ant1 1042 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
2116, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  (mulGrp `  R
) ) )
2215simp2d 1034 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  R )
)
2322, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  (mulGrp `  R
) ) )
2415simp3d 1035 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  R )
)
2524, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  (mulGrp `  R
) ) )
26 eqid 2229 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
27 eqid 2229 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
2826, 27sgrpass 13449 . . . . . . 7  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( a  e.  ( Base `  (mulGrp `  R ) )  /\  b  e.  ( Base `  (mulGrp `  R )
)  /\  c  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
298, 21, 23, 25, 28syl13anc 1273 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
30 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30mgpplusgg 13895 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
32313ad2ant1 1042 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3332adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3433oveqd 6024 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) b )  =  ( a ( +g  `  (mulGrp `  R ) ) b ) )
35 eqidd 2230 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  =  c )
3633, 34, 35oveq123d 6028 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( ( a ( +g  `  (mulGrp `  R )
) b ) ( +g  `  (mulGrp `  R ) ) c ) )
37 eqidd 2230 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  =  a )
3833oveqd 6024 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( b ( .r `  R ) c )  =  ( b ( +g  `  (mulGrp `  R ) ) c ) )
3933, 37, 38oveq123d 6028 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) ( b ( .r
`  R ) c ) )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
4029, 36, 393eqtr4d 2272 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) )
41 simp2 1022 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
42 simp1 1021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
432, 30ressmulrg 13186 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
4443eqcomd 2235 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  I )  =  ( .r `  R ) )
4544oveqd 6024 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
46 eqidd 2230 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  c  =  c )
4744, 45, 46oveq123d 6028 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( .r `  R
) b ) ( .r `  R ) c ) )
48 eqidd 2230 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  a  =  a )
4944oveqd 6024 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
5044, 48, 49oveq123d 6028 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( .r `  R ) ( b ( .r
`  R ) c ) ) )
5147, 50eqeq12d 2244 . . . . . . 7  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5241, 42, 51syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) ) )
5440, 53mpbird 167 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
5554ralrimivvva 2613 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
56 ressex 13106 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
5742, 41, 56syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Rs  U )  e.  _V )
582, 57eqeltrid 2316 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
59 eqid 2229 . . . . . 6  |-  (mulGrp `  I )  =  (mulGrp `  I )
60 eqid 2229 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
6159, 60mgpbasg 13897 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
6258, 61syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
63 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  I )  =  ( .r `  I
)
6459, 63mgpplusgg 13895 . . . . . . . . 9  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6558, 64syl 14 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6665oveqd 6024 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
67 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  c  =  c )
6865, 66, 67oveq123d 6028 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c ) )
69 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  a  =  a )
7065oveqd 6024 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
b ( .r `  I ) c )  =  ( b ( +g  `  (mulGrp `  I ) ) c ) )
7165, 69, 70oveq123d 6028 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
7268, 71eqeq12d 2244 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7362, 72raleqbidv 2744 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r
`  I ) c ) )  <->  A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7462, 73raleqbidv 2744 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I ) ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7562, 74raleqbidv 2744 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7655, 75mpbid 147 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  (mulGrp `  I ) ) A. b  e.  ( Base `  (mulGrp `  I )
) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
77 eqid 2229 . . 3  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
78 eqid 2229 . . 3  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
7977, 78issgrp 13444 . 2  |-  ( (mulGrp `  I )  e. Smgrp  <->  ( (mulGrp `  I )  e. Mgm  /\  A. a  e.  ( Base `  (mulGrp `  I )
) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
804, 76, 79sylanbrc 417 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ` cfv 5318  (class class class)co 6007   Basecbs 13040   ↾s cress 13041   +g cplusg 13118   .rcmulr 13119   0gc0g 13297  Mgmcmgm 13395  Smgrpcsgrp 13442  mulGrpcmgp 13891  Rngcrng 13903  LIdealclidl 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-abl 13832  df-mgp 13892  df-rng 13904  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441
This theorem is referenced by:  rnglidlrng  14470
  Copyright terms: Public domain W3C validator