ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp Unicode version

Theorem rnglidlmsgrp 14129
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmsgrp  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )

Proof of Theorem rnglidlmsgrp
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 rnglidlabl.i . . 3  |-  I  =  ( Rs  U )
3 rnglidlabl.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3rnglidlmmgm 14128 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
5 eqid 2196 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
65rngmgp 13568 . . . . . . . . 9  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
763ad2ant1 1020 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  R )  e. Smgrp )
87adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  (mulGrp `  R )  e. Smgrp )
91, 2lidlssbas 14109 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
109sseld 3183 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
119sseld 3183 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
129sseld 3183 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1310, 11, 123anim123d 1330 . . . . . . . . . . 11  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
14133ad2ant2 1021 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1514imp 124 . . . . . . . . 9  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
1615simp1d 1011 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  R )
)
17 eqid 2196 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
185, 17mgpbasg 13558 . . . . . . . . . 10  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
19183ad2ant1 1020 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
2116, 20eleqtrd 2275 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  (mulGrp `  R
) ) )
2215simp2d 1012 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  R )
)
2322, 20eleqtrd 2275 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  (mulGrp `  R
) ) )
2415simp3d 1013 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  R )
)
2524, 20eleqtrd 2275 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  (mulGrp `  R
) ) )
26 eqid 2196 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
27 eqid 2196 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
2826, 27sgrpass 13110 . . . . . . 7  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( a  e.  ( Base `  (mulGrp `  R ) )  /\  b  e.  ( Base `  (mulGrp `  R )
)  /\  c  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
298, 21, 23, 25, 28syl13anc 1251 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
30 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30mgpplusgg 13556 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
32313ad2ant1 1020 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3332adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3433oveqd 5942 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) b )  =  ( a ( +g  `  (mulGrp `  R ) ) b ) )
35 eqidd 2197 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  =  c )
3633, 34, 35oveq123d 5946 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( ( a ( +g  `  (mulGrp `  R )
) b ) ( +g  `  (mulGrp `  R ) ) c ) )
37 eqidd 2197 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  =  a )
3833oveqd 5942 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( b ( .r `  R ) c )  =  ( b ( +g  `  (mulGrp `  R ) ) c ) )
3933, 37, 38oveq123d 5946 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) ( b ( .r
`  R ) c ) )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
4029, 36, 393eqtr4d 2239 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) )
41 simp2 1000 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
42 simp1 999 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
432, 30ressmulrg 12847 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
4443eqcomd 2202 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  I )  =  ( .r `  R ) )
4544oveqd 5942 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
46 eqidd 2197 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  c  =  c )
4744, 45, 46oveq123d 5946 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( .r `  R
) b ) ( .r `  R ) c ) )
48 eqidd 2197 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  a  =  a )
4944oveqd 5942 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
5044, 48, 49oveq123d 5946 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( .r `  R ) ( b ( .r
`  R ) c ) ) )
5147, 50eqeq12d 2211 . . . . . . 7  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5241, 42, 51syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) ) )
5440, 53mpbird 167 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
5554ralrimivvva 2580 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
56 ressex 12768 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
5742, 41, 56syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Rs  U )  e.  _V )
582, 57eqeltrid 2283 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
59 eqid 2196 . . . . . 6  |-  (mulGrp `  I )  =  (mulGrp `  I )
60 eqid 2196 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
6159, 60mgpbasg 13558 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
6258, 61syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
63 eqid 2196 . . . . . . . . . 10  |-  ( .r
`  I )  =  ( .r `  I
)
6459, 63mgpplusgg 13556 . . . . . . . . 9  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6558, 64syl 14 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6665oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
67 eqidd 2197 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  c  =  c )
6865, 66, 67oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c ) )
69 eqidd 2197 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  a  =  a )
7065oveqd 5942 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
b ( .r `  I ) c )  =  ( b ( +g  `  (mulGrp `  I ) ) c ) )
7165, 69, 70oveq123d 5946 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
7268, 71eqeq12d 2211 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7362, 72raleqbidv 2709 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r
`  I ) c ) )  <->  A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7462, 73raleqbidv 2709 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I ) ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7562, 74raleqbidv 2709 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7655, 75mpbid 147 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  (mulGrp `  I ) ) A. b  e.  ( Base `  (mulGrp `  I )
) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
77 eqid 2196 . . 3  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
78 eqid 2196 . . 3  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
7977, 78issgrp 13105 . 2  |-  ( (mulGrp `  I )  e. Smgrp  <->  ( (mulGrp `  I )  e. Mgm  /\  A. a  e.  ( Base `  (mulGrp `  I )
) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
804, 76, 79sylanbrc 417 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   A.wral 2475   _Vcvv 2763   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   .rcmulr 12781   0gc0g 12958  Mgmcmgm 13056  Smgrpcsgrp 13103  mulGrpcmgp 13552  Rngcrng 13564  LIdealclidl 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-7 9071  df-8 9072  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-ip 12798  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-abl 13493  df-mgp 13553  df-rng 13565  df-lssm 13985  df-sra 14067  df-rgmod 14068  df-lidl 14101
This theorem is referenced by:  rnglidlrng  14130
  Copyright terms: Public domain W3C validator