ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp Unicode version

Theorem rnglidlmsgrp 14446
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmsgrp  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )

Proof of Theorem rnglidlmsgrp
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 rnglidlabl.i . . 3  |-  I  =  ( Rs  U )
3 rnglidlabl.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3rnglidlmmgm 14445 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
5 eqid 2229 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
65rngmgp 13885 . . . . . . . . 9  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
763ad2ant1 1042 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  R )  e. Smgrp )
87adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  (mulGrp `  R )  e. Smgrp )
91, 2lidlssbas 14426 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
109sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
119sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
129sseld 3223 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1310, 11, 123anim123d 1353 . . . . . . . . . . 11  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
14133ad2ant2 1043 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1514imp 124 . . . . . . . . 9  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
1615simp1d 1033 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  R )
)
17 eqid 2229 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
185, 17mgpbasg 13875 . . . . . . . . . 10  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
19183ad2ant1 1042 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
2116, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  (mulGrp `  R
) ) )
2215simp2d 1034 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  R )
)
2322, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  (mulGrp `  R
) ) )
2415simp3d 1035 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  R )
)
2524, 20eleqtrd 2308 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  (mulGrp `  R
) ) )
26 eqid 2229 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
27 eqid 2229 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
2826, 27sgrpass 13427 . . . . . . 7  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( a  e.  ( Base `  (mulGrp `  R ) )  /\  b  e.  ( Base `  (mulGrp `  R )
)  /\  c  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
298, 21, 23, 25, 28syl13anc 1273 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
30 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30mgpplusgg 13873 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
32313ad2ant1 1042 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3332adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3433oveqd 6011 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) b )  =  ( a ( +g  `  (mulGrp `  R ) ) b ) )
35 eqidd 2230 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  =  c )
3633, 34, 35oveq123d 6015 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( ( a ( +g  `  (mulGrp `  R )
) b ) ( +g  `  (mulGrp `  R ) ) c ) )
37 eqidd 2230 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  =  a )
3833oveqd 6011 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( b ( .r `  R ) c )  =  ( b ( +g  `  (mulGrp `  R ) ) c ) )
3933, 37, 38oveq123d 6015 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) ( b ( .r
`  R ) c ) )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
4029, 36, 393eqtr4d 2272 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) )
41 simp2 1022 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
42 simp1 1021 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
432, 30ressmulrg 13164 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
4443eqcomd 2235 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  I )  =  ( .r `  R ) )
4544oveqd 6011 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
46 eqidd 2230 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  c  =  c )
4744, 45, 46oveq123d 6015 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( .r `  R
) b ) ( .r `  R ) c ) )
48 eqidd 2230 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  a  =  a )
4944oveqd 6011 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
5044, 48, 49oveq123d 6015 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( .r `  R ) ( b ( .r
`  R ) c ) ) )
5147, 50eqeq12d 2244 . . . . . . 7  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5241, 42, 51syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) ) )
5440, 53mpbird 167 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
5554ralrimivvva 2613 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
56 ressex 13084 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
5742, 41, 56syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Rs  U )  e.  _V )
582, 57eqeltrid 2316 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
59 eqid 2229 . . . . . 6  |-  (mulGrp `  I )  =  (mulGrp `  I )
60 eqid 2229 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
6159, 60mgpbasg 13875 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
6258, 61syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
63 eqid 2229 . . . . . . . . . 10  |-  ( .r
`  I )  =  ( .r `  I
)
6459, 63mgpplusgg 13873 . . . . . . . . 9  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6558, 64syl 14 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6665oveqd 6011 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
67 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  c  =  c )
6865, 66, 67oveq123d 6015 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c ) )
69 eqidd 2230 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  a  =  a )
7065oveqd 6011 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
b ( .r `  I ) c )  =  ( b ( +g  `  (mulGrp `  I ) ) c ) )
7165, 69, 70oveq123d 6015 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
7268, 71eqeq12d 2244 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7362, 72raleqbidv 2744 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r
`  I ) c ) )  <->  A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7462, 73raleqbidv 2744 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I ) ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7562, 74raleqbidv 2744 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7655, 75mpbid 147 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  (mulGrp `  I ) ) A. b  e.  ( Base `  (mulGrp `  I )
) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
77 eqid 2229 . . 3  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
78 eqid 2229 . . 3  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
7977, 78issgrp 13422 . 2  |-  ( (mulGrp `  I )  e. Smgrp  <->  ( (mulGrp `  I )  e. Mgm  /\  A. a  e.  ( Base `  (mulGrp `  I )
) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
804, 76, 79sylanbrc 417 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799   ` cfv 5314  (class class class)co 5994   Basecbs 13018   ↾s cress 13019   +g cplusg 13096   .rcmulr 13097   0gc0g 13275  Mgmcmgm 13373  Smgrpcsgrp 13420  mulGrpcmgp 13869  Rngcrng 13881  LIdealclidl 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-abl 13810  df-mgp 13870  df-rng 13882  df-lssm 14302  df-sra 14384  df-rgmod 14385  df-lidl 14418
This theorem is referenced by:  rnglidlrng  14447
  Copyright terms: Public domain W3C validator