ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmsgrp Unicode version

Theorem rnglidlmsgrp 13810
Description: The multiplicative group of a (left) ideal of a non-unital ring is a semigroup. (Contributed by AV, 17-Feb-2020.) Generalization for non-unital rings. The assumption  .0.  e.  U is required because a left ideal of a non-unital ring does not have to be a subgroup. (Revised by AV, 11-Mar-2025.)
Hypotheses
Ref Expression
rnglidlabl.l  |-  L  =  (LIdeal `  R )
rnglidlabl.i  |-  I  =  ( Rs  U )
rnglidlabl.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglidlmsgrp  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )

Proof of Theorem rnglidlmsgrp
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlabl.l . . 3  |-  L  =  (LIdeal `  R )
2 rnglidlabl.i . . 3  |-  I  =  ( Rs  U )
3 rnglidlabl.z . . 3  |-  .0.  =  ( 0g `  R )
41, 2, 3rnglidlmmgm 13809 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Mgm )
5 eqid 2189 . . . . . . . . . 10  |-  (mulGrp `  R )  =  (mulGrp `  R )
65rngmgp 13287 . . . . . . . . 9  |-  ( R  e. Rng  ->  (mulGrp `  R )  e. Smgrp )
763ad2ant1 1020 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  R )  e. Smgrp )
87adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  (mulGrp `  R )  e. Smgrp )
91, 2lidlssbas 13790 . . . . . . . . . . . . 13  |-  ( U  e.  L  ->  ( Base `  I )  C_  ( Base `  R )
)
109sseld 3169 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
a  e.  ( Base `  I )  ->  a  e.  ( Base `  R
) ) )
119sseld 3169 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
b  e.  ( Base `  I )  ->  b  e.  ( Base `  R
) ) )
129sseld 3169 . . . . . . . . . . . 12  |-  ( U  e.  L  ->  (
c  e.  ( Base `  I )  ->  c  e.  ( Base `  R
) ) )
1310, 11, 123anim123d 1330 . . . . . . . . . . 11  |-  ( U  e.  L  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
14133ad2ant2 1021 . . . . . . . . . 10  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) )  -> 
( a  e.  (
Base `  R )  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) ) )
1514imp 124 . . . . . . . . 9  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a  e.  ( Base `  R
)  /\  b  e.  ( Base `  R )  /\  c  e.  ( Base `  R ) ) )
1615simp1d 1011 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  R )
)
17 eqid 2189 . . . . . . . . . . 11  |-  ( Base `  R )  =  (
Base `  R )
185, 17mgpbasg 13277 . . . . . . . . . 10  |-  ( R  e. Rng  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
19183ad2ant1 1020 . . . . . . . . 9  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  R )  =  ( Base `  (mulGrp `  R ) ) )
2019adantr 276 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( Base `  R
)  =  ( Base `  (mulGrp `  R )
) )
2116, 20eleqtrd 2268 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  e.  (
Base `  (mulGrp `  R
) ) )
2215simp2d 1012 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  R )
)
2322, 20eleqtrd 2268 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  b  e.  (
Base `  (mulGrp `  R
) ) )
2415simp3d 1013 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  R )
)
2524, 20eleqtrd 2268 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  e.  (
Base `  (mulGrp `  R
) ) )
26 eqid 2189 . . . . . . . 8  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
27 eqid 2189 . . . . . . . 8  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
2826, 27sgrpass 12868 . . . . . . 7  |-  ( ( (mulGrp `  R )  e. Smgrp  /\  ( a  e.  ( Base `  (mulGrp `  R ) )  /\  b  e.  ( Base `  (mulGrp `  R )
)  /\  c  e.  ( Base `  (mulGrp `  R
) ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
298, 21, 23, 25, 28syl13anc 1251 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( +g  `  (mulGrp `  R ) ) b ) ( +g  `  (mulGrp `  R ) ) c )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
30 eqid 2189 . . . . . . . . . 10  |-  ( .r
`  R )  =  ( .r `  R
)
315, 30mgpplusgg 13275 . . . . . . . . 9  |-  ( R  e. Rng  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
32313ad2ant1 1020 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3332adantr 276 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( .r `  R )  =  ( +g  `  (mulGrp `  R ) ) )
3433oveqd 5912 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) b )  =  ( a ( +g  `  (mulGrp `  R ) ) b ) )
35 eqidd 2190 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  c  =  c )
3633, 34, 35oveq123d 5916 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( ( a ( +g  `  (mulGrp `  R )
) b ) ( +g  `  (mulGrp `  R ) ) c ) )
37 eqidd 2190 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  a  =  a )
3833oveqd 5912 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( b ( .r `  R ) c )  =  ( b ( +g  `  (mulGrp `  R ) ) c ) )
3933, 37, 38oveq123d 5916 . . . . . 6  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( a ( .r `  R ) ( b ( .r
`  R ) c ) )  =  ( a ( +g  `  (mulGrp `  R ) ) ( b ( +g  `  (mulGrp `  R ) ) c ) ) )
4029, 36, 393eqtr4d 2232 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) )
41 simp2 1000 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  U  e.  L )
42 simp1 999 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  R  e. Rng )
432, 30ressmulrg 12653 . . . . . . . . . 10  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  R )  =  ( .r `  I ) )
4443eqcomd 2195 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( .r `  I )  =  ( .r `  R ) )
4544oveqd 5912 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) b )  =  ( a ( .r `  R ) b ) )
46 eqidd 2190 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  c  =  c )
4744, 45, 46oveq123d 5916 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( .r `  R
) b ) ( .r `  R ) c ) )
48 eqidd 2190 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  a  =  a )
4944oveqd 5912 . . . . . . . . 9  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( b ( .r `  I ) c )  =  ( b ( .r `  R ) c ) )
5044, 48, 49oveq123d 5916 . . . . . . . 8  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( .r `  R ) ( b ( .r
`  R ) c ) ) )
5147, 50eqeq12d 2204 . . . . . . 7  |-  ( ( U  e.  L  /\  R  e. Rng )  ->  ( ( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5241, 42, 51syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( .r `  R ) b ) ( .r `  R
) c )  =  ( a ( .r
`  R ) ( b ( .r `  R ) c ) ) ) )
5352adantr 276 . . . . 5  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  ( ( a ( .r `  R
) b ) ( .r `  R ) c )  =  ( a ( .r `  R ) ( b ( .r `  R
) c ) ) ) )
5440, 53mpbird 167 . . . 4  |-  ( ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  /\  ( a  e.  (
Base `  I )  /\  b  e.  ( Base `  I )  /\  c  e.  ( Base `  I ) ) )  ->  ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
5554ralrimivvva 2573 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  I
) A. b  e.  ( Base `  I
) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) ) )
56 ressex 12574 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L )  ->  ( Rs  U )  e.  _V )
5742, 41, 56syl2anc 411 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Rs  U )  e.  _V )
582, 57eqeltrid 2276 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  I  e.  _V )
59 eqid 2189 . . . . . 6  |-  (mulGrp `  I )  =  (mulGrp `  I )
60 eqid 2189 . . . . . 6  |-  ( Base `  I )  =  (
Base `  I )
6159, 60mgpbasg 13277 . . . . 5  |-  ( I  e.  _V  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
6258, 61syl 14 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( Base `  I )  =  ( Base `  (mulGrp `  I ) ) )
63 eqid 2189 . . . . . . . . . 10  |-  ( .r
`  I )  =  ( .r `  I
)
6459, 63mgpplusgg 13275 . . . . . . . . 9  |-  ( I  e.  _V  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6558, 64syl 14 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( .r `  I )  =  ( +g  `  (mulGrp `  I ) ) )
6665oveqd 5912 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) b )  =  ( a ( +g  `  (mulGrp `  I ) ) b ) )
67 eqidd 2190 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  c  =  c )
6865, 66, 67oveq123d 5916 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c ) )
69 eqidd 2190 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  a  =  a )
7065oveqd 5912 . . . . . . . 8  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
b ( .r `  I ) c )  =  ( b ( +g  `  (mulGrp `  I ) ) c ) )
7165, 69, 70oveq123d 5916 . . . . . . 7  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
a ( .r `  I ) ( b ( .r `  I
) c ) )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
7268, 71eqeq12d 2204 . . . . . 6  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (
( ( a ( .r `  I ) b ) ( .r
`  I ) c )  =  ( a ( .r `  I
) ( b ( .r `  I ) c ) )  <->  ( (
a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7362, 72raleqbidv 2698 . . . . 5  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. c  e.  ( Base `  I ) ( ( a ( .r
`  I ) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r
`  I ) c ) )  <->  A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7462, 73raleqbidv 2698 . . . 4  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I ) ( ( a ( .r `  I ) b ) ( .r `  I
) c )  =  ( a ( .r
`  I ) ( b ( .r `  I ) c ) )  <->  A. b  e.  (
Base `  (mulGrp `  I
) ) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7562, 74raleqbidv 2698 . . 3  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  ( A. a  e.  ( Base `  I ) A. b  e.  ( Base `  I ) A. c  e.  ( Base `  I
) ( ( a ( .r `  I
) b ) ( .r `  I ) c )  =  ( a ( .r `  I ) ( b ( .r `  I
) c ) )  <->  A. a  e.  ( Base `  (mulGrp `  I
) ) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
7655, 75mpbid 147 . 2  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  A. a  e.  ( Base `  (mulGrp `  I ) ) A. b  e.  ( Base `  (mulGrp `  I )
) A. c  e.  ( Base `  (mulGrp `  I ) ) ( ( a ( +g  `  (mulGrp `  I )
) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) )
77 eqid 2189 . . 3  |-  ( Base `  (mulGrp `  I )
)  =  ( Base `  (mulGrp `  I )
)
78 eqid 2189 . . 3  |-  ( +g  `  (mulGrp `  I )
)  =  ( +g  `  (mulGrp `  I )
)
7977, 78issgrp 12863 . 2  |-  ( (mulGrp `  I )  e. Smgrp  <->  ( (mulGrp `  I )  e. Mgm  /\  A. a  e.  ( Base `  (mulGrp `  I )
) A. b  e.  ( Base `  (mulGrp `  I ) ) A. c  e.  ( Base `  (mulGrp `  I )
) ( ( a ( +g  `  (mulGrp `  I ) ) b ) ( +g  `  (mulGrp `  I ) ) c )  =  ( a ( +g  `  (mulGrp `  I ) ) ( b ( +g  `  (mulGrp `  I ) ) c ) ) ) )
804, 76, 79sylanbrc 417 1  |-  ( ( R  e. Rng  /\  U  e.  L  /\  .0.  e.  U )  ->  (mulGrp `  I )  e. Smgrp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752   ` cfv 5235  (class class class)co 5895   Basecbs 12511   ↾s cress 12512   +g cplusg 12586   .rcmulr 12587   0gc0g 12758  Mgmcmgm 12827  Smgrpcsgrp 12861  mulGrpcmgp 13271  Rngcrng 13283  LIdealclidl 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-addcom 7940  ax-addass 7942  ax-i2m1 7945  ax-0lt1 7946  ax-0id 7948  ax-rnegex 7949  ax-pre-ltirr 7952  ax-pre-lttrn 7954  ax-pre-ltadd 7956
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-pnf 8023  df-mnf 8024  df-ltxr 8026  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-5 9010  df-6 9011  df-7 9012  df-8 9013  df-ndx 12514  df-slot 12515  df-base 12517  df-sets 12518  df-iress 12519  df-plusg 12599  df-mulr 12600  df-sca 12602  df-vsca 12603  df-ip 12604  df-0g 12760  df-mgm 12829  df-sgrp 12862  df-mnd 12875  df-grp 12945  df-abl 13223  df-mgp 13272  df-rng 13284  df-lssm 13666  df-sra 13748  df-rgmod 13749  df-lidl 13782
This theorem is referenced by:  rnglidlrng  13811
  Copyright terms: Public domain W3C validator