| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swopolem | Unicode version | ||
| Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swopolem.1 |
|
| Ref | Expression |
|---|---|
| swopolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopolem.1 |
. . 3
| |
| 2 | 1 | ralrimivvva 2613 |
. 2
|
| 3 | breq1 4086 |
. . . 4
| |
| 4 | breq1 4086 |
. . . . 5
| |
| 5 | 4 | orbi1d 796 |
. . . 4
|
| 6 | 3, 5 | imbi12d 234 |
. . 3
|
| 7 | breq2 4087 |
. . . 4
| |
| 8 | breq2 4087 |
. . . . 5
| |
| 9 | 8 | orbi2d 795 |
. . . 4
|
| 10 | 7, 9 | imbi12d 234 |
. . 3
|
| 11 | breq2 4087 |
. . . . 5
| |
| 12 | breq1 4086 |
. . . . 5
| |
| 13 | 11, 12 | orbi12d 798 |
. . . 4
|
| 14 | 13 | imbi2d 230 |
. . 3
|
| 15 | 6, 10, 14 | rspc3v 2923 |
. 2
|
| 16 | 2, 15 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 |
| This theorem is referenced by: swoer 6708 swoord1 6709 swoord2 6710 |
| Copyright terms: Public domain | W3C validator |