| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > swopolem | Unicode version | ||
| Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| swopolem.1 |
|
| Ref | Expression |
|---|---|
| swopolem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | swopolem.1 |
. . 3
| |
| 2 | 1 | ralrimivvva 2580 |
. 2
|
| 3 | breq1 4036 |
. . . 4
| |
| 4 | breq1 4036 |
. . . . 5
| |
| 5 | 4 | orbi1d 792 |
. . . 4
|
| 6 | 3, 5 | imbi12d 234 |
. . 3
|
| 7 | breq2 4037 |
. . . 4
| |
| 8 | breq2 4037 |
. . . . 5
| |
| 9 | 8 | orbi2d 791 |
. . . 4
|
| 10 | 7, 9 | imbi12d 234 |
. . 3
|
| 11 | breq2 4037 |
. . . . 5
| |
| 12 | breq1 4036 |
. . . . 5
| |
| 13 | 11, 12 | orbi12d 794 |
. . . 4
|
| 14 | 13 | imbi2d 230 |
. . 3
|
| 15 | 6, 10, 14 | rspc3v 2884 |
. 2
|
| 16 | 2, 15 | mpan9 281 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 |
| This theorem is referenced by: swoer 6620 swoord1 6621 swoord2 6622 |
| Copyright terms: Public domain | W3C validator |