ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swopolem Unicode version

Theorem swopolem 4299
Description: Perform the substitutions into the strict weak ordering law. (Contributed by Mario Carneiro, 31-Dec-2014.)
Hypothesis
Ref Expression
swopolem.1  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
Assertion
Ref Expression
swopolem  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Distinct variable groups:    x, y, z, A    ph, x, y, z   
x, R, y, z   
x, X, y, z   
y, Y, z    z, Z
Allowed substitution hints:    Y( x)    Z( x, y)

Proof of Theorem swopolem
StepHypRef Expression
1 swopolem.1 . . 3  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  A  /\  z  e.  A ) )  -> 
( x R y  ->  ( x R z  \/  z R y ) ) )
21ralrimivvva 2558 . 2  |-  ( ph  ->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )
3 breq1 4001 . . . 4  |-  ( x  =  X  ->  (
x R y  <->  X R
y ) )
4 breq1 4001 . . . . 5  |-  ( x  =  X  ->  (
x R z  <->  X R
z ) )
54orbi1d 791 . . . 4  |-  ( x  =  X  ->  (
( x R z  \/  z R y )  <->  ( X R z  \/  z R y ) ) )
63, 5imbi12d 234 . . 3  |-  ( x  =  X  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( X R y  ->  ( X R z  \/  z R y ) ) ) )
7 breq2 4002 . . . 4  |-  ( y  =  Y  ->  ( X R y  <->  X R Y ) )
8 breq2 4002 . . . . 5  |-  ( y  =  Y  ->  (
z R y  <->  z R Y ) )
98orbi2d 790 . . . 4  |-  ( y  =  Y  ->  (
( X R z  \/  z R y )  <->  ( X R z  \/  z R Y ) ) )
107, 9imbi12d 234 . . 3  |-  ( y  =  Y  ->  (
( X R y  ->  ( X R z  \/  z R y ) )  <->  ( X R Y  ->  ( X R z  \/  z R Y ) ) ) )
11 breq2 4002 . . . . 5  |-  ( z  =  Z  ->  ( X R z  <->  X R Z ) )
12 breq1 4001 . . . . 5  |-  ( z  =  Z  ->  (
z R Y  <->  Z R Y ) )
1311, 12orbi12d 793 . . . 4  |-  ( z  =  Z  ->  (
( X R z  \/  z R Y )  <->  ( X R Z  \/  Z R Y ) ) )
1413imbi2d 230 . . 3  |-  ( z  =  Z  ->  (
( X R Y  ->  ( X R z  \/  z R Y ) )  <->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
156, 10, 14rspc3v 2855 . 2  |-  ( ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  ->  ( X R Y  ->  ( X R Z  \/  Z R Y ) ) ) )
162, 15mpan9 281 1  |-  ( (
ph  /\  ( X  e.  A  /\  Y  e.  A  /\  Z  e.  A ) )  -> 
( X R Y  ->  ( X R Z  \/  Z R Y ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    = wceq 1353    e. wcel 2146   A.wral 2453   class class class wbr 3998
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999
This theorem is referenced by:  swoer  6553  swoord1  6554  swoord2  6555
  Copyright terms: Public domain W3C validator