ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralun Unicode version

Theorem ralun 3363
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 3362 . 2  |-  ( A. x  e.  ( A  u.  B ) ph  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ph ) )
21biimpri 133 1  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  B  ph )  ->  A. x  e.  ( A  u.  B
) ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wral 2486    u. cun 3172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-un 3178
This theorem is referenced by:  omsinds  4688  ac6sfi  7021  fimax2gtrilemstep  7023  finomni  7268  uzsinds  10626  iseqf1olemqk  10689  seq3f1olemstep  10696  fimaxre2  11653  modfsummod  11884
  Copyright terms: Public domain W3C validator