ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralun GIF version

Theorem ralun 3304
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
ralun ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem ralun
StepHypRef Expression
1 ralunb 3303 . 2 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑))
21biimpri 132 1 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐵 𝜑) → ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wral 2444  cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-un 3120
This theorem is referenced by:  omsinds  4599  ac6sfi  6864  fimax2gtrilemstep  6866  finomni  7104  uzsinds  10377  iseqf1olemqk  10429  seq3f1olemstep  10436  fimaxre2  11168  modfsummod  11399
  Copyright terms: Public domain W3C validator