| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralun | GIF version | ||
| Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralunb 3358 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wral 2485 ∪ cun 3168 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-un 3174 |
| This theorem is referenced by: omsinds 4678 ac6sfi 7010 fimax2gtrilemstep 7012 finomni 7257 uzsinds 10611 iseqf1olemqk 10674 seq3f1olemstep 10681 fimaxre2 11613 modfsummod 11844 |
| Copyright terms: Public domain | W3C validator |