![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralun | GIF version |
Description: Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
ralun | ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralunb 3182 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | |
2 | 1 | biimpri 132 | 1 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wral 2360 ∪ cun 2998 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-v 2622 df-un 3004 |
This theorem is referenced by: omsinds 4448 ac6sfi 6668 fimax2gtrilemstep 6670 finomni 6857 uzsinds 9909 iseqf1olemqk 9984 seq3f1olemstep 9991 fimaxre2 10719 modfsummod 10913 |
Copyright terms: Public domain | W3C validator |