ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 Unicode version

Theorem fimaxre2 10553
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Distinct variable group:    x, A, y

Proof of Theorem fimaxre2
Dummy variables  s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3036 . . . 4  |-  ( w  =  (/)  ->  ( w 
C_  RR  <->  (/)  C_  RR )
)
2 raleq 2558 . . . . 5  |-  ( w  =  (/)  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (/)  y  <_  x ) )
32rexbidv 2377 . . . 4  |-  ( w  =  (/)  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) )
41, 3imbi12d 232 . . 3  |-  ( w  =  (/)  ->  ( ( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) ) )
5 sseq1 3036 . . . 4  |-  ( w  =  u  ->  (
w  C_  RR  <->  u  C_  RR ) )
6 raleq 2558 . . . . 5  |-  ( w  =  u  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  u  y  <_  x ) )
76rexbidv 2377 . . . 4  |-  ( w  =  u  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )
85, 7imbi12d 232 . . 3  |-  ( w  =  u  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) ) )
9 sseq1 3036 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( w  C_  RR 
<->  ( u  u.  {
v } )  C_  RR ) )
10 raleq 2558 . . . . 5  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (
u  u.  { v } ) y  <_  x ) )
1110rexbidv 2377 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
)
129, 11imbi12d 232 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( w 
C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x
)  <->  ( ( u  u.  { v } )  C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
) )
13 sseq1 3036 . . . 4  |-  ( w  =  A  ->  (
w  C_  RR  <->  A  C_  RR ) )
14 raleq 2558 . . . . 5  |-  ( w  =  A  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  A  y  <_  x ) )
1514rexbidv 2377 . . . 4  |-  ( w  =  A  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
1613, 15imbi12d 232 . . 3  |-  ( w  =  A  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
17 0re 7432 . . . . 5  |-  0  e.  RR
18 ral0 3370 . . . . 5  |-  A. y  e.  (/)  y  <_  0
19 breq2 3824 . . . . . . 7  |-  ( x  =  0  ->  (
y  <_  x  <->  y  <_  0 ) )
2019ralbidv 2376 . . . . . 6  |-  ( x  =  0  ->  ( A. y  e.  (/)  y  <_  x 
<-> 
A. y  e.  (/)  y  <_  0 ) )
2120rspcev 2715 . . . . 5  |-  ( ( 0  e.  RR  /\  A. y  e.  (/)  y  <_ 
0 )  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
2217, 18, 21mp2an 417 . . . 4  |-  E. x  e.  RR  A. y  e.  (/)  y  <_  x
2322a1i 9 . . 3  |-  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
24 unss 3163 . . . . . . . . . 10  |-  ( ( u  C_  RR  /\  {
v }  C_  RR ) 
<->  ( u  u.  {
v } )  C_  RR )
2524biimpri 131 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  ( u  C_  RR  /\ 
{ v }  C_  RR ) )
2625simpld 110 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  u  C_  RR )
2726adantl 271 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  u  C_  RR )
28 simplr 497 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  -> 
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
2927, 28mpd 13 . . . . . 6  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
30 breq2 3824 . . . . . . . 8  |-  ( x  =  s  ->  (
y  <_  x  <->  y  <_  s ) )
3130ralbidv 2376 . . . . . . 7  |-  ( x  =  s  ->  ( A. y  e.  u  y  <_  x  <->  A. y  e.  u  y  <_  s ) )
3231cbvrexv 2587 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  u  y  <_  x  <->  E. s  e.  RR  A. y  e.  u  y  <_  s )
3329, 32sylib 120 . . . . 5  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. s  e.  RR  A. y  e.  u  y  <_  s )
34 simprl 498 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  e.  RR )
3525simprd 112 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  { v }  C_  RR )
36 vex 2618 . . . . . . . . . 10  |-  v  e. 
_V
3736snss 3549 . . . . . . . . 9  |-  ( v  e.  RR  <->  { v }  C_  RR )
3835, 37sylibr 132 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  v  e.  RR )
3938ad2antlr 473 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  e.  RR )
40 maxcl 10539 . . . . . . 7  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
4134, 39, 40syl2anc 403 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
42 nfv 1464 . . . . . . . . . . 11  |-  F/ y  u  e.  Fin
43 nfv 1464 . . . . . . . . . . . 12  |-  F/ y  u  C_  RR
44 nfcv 2225 . . . . . . . . . . . . 13  |-  F/_ y RR
45 nfra1 2405 . . . . . . . . . . . . 13  |-  F/ y A. y  e.  u  y  <_  x
4644, 45nfrexxy 2411 . . . . . . . . . . . 12  |-  F/ y E. x  e.  RR  A. y  e.  u  y  <_  x
4743, 46nfim 1507 . . . . . . . . . . 11  |-  F/ y ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
4842, 47nfan 1500 . . . . . . . . . 10  |-  F/ y ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
49 nfv 1464 . . . . . . . . . 10  |-  F/ y ( u  u.  {
v } )  C_  RR
5048, 49nfan 1500 . . . . . . . . 9  |-  F/ y ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )
51 nfv 1464 . . . . . . . . . 10  |-  F/ y  s  e.  RR
52 nfra1 2405 . . . . . . . . . 10  |-  F/ y A. y  e.  u  y  <_  s
5351, 52nfan 1500 . . . . . . . . 9  |-  F/ y ( s  e.  RR  /\ 
A. y  e.  u  y  <_  s )
5450, 53nfan 1500 . . . . . . . 8  |-  F/ y ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )
55 simprr 499 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  s )
56 maxle1 10540 . . . . . . . . . . . . 13  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
5734, 39, 56syl2anc 403 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
58 r19.27av 2500 . . . . . . . . . . . 12  |-  ( ( A. y  e.  u  y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
5955, 57, 58syl2anc 403 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6059r19.21bi 2457 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6127ad2antrr 472 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  u  C_  RR )
62 simpr 108 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  u )
6361, 62sseldd 3015 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  RR )
6434adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  s  e.  RR )
6541adantr 270 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
66 letr 7512 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  s  e.  RR  /\  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )  ->  ( ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6763, 64, 65, 66syl3anc 1172 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6860, 67mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
6968ex 113 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  (
y  e.  u  -> 
y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7054, 69ralrimi 2440 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
71 maxle2 10541 . . . . . . . . 9  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7234, 39, 71syl2anc 403 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
73 breq1 3823 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7473ralsng 3466 . . . . . . . . 9  |-  ( v  e.  RR  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7539, 74syl 14 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7672, 75mpbird 165 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
77 ralun 3171 . . . . . . 7  |-  ( ( A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  )  /\  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7870, 76, 77syl2anc 403 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
79 breq2 3824 . . . . . . . 8  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( y  <_  x 
<->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8079ralbidv 2376 . . . . . . 7  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( A. y  e.  ( u  u.  {
v } ) y  <_  x  <->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8180rspcev 2715 . . . . . 6  |-  ( ( sup ( { s ,  v } ,  RR ,  <  )  e.  RR  /\  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8241, 78, 81syl2anc 403 . . . . 5  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x )
8333, 82rexlimddv 2489 . . . 4  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8483exp31 356 . . 3  |-  ( u  e.  Fin  ->  (
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )  -> 
( ( u  u. 
{ v } ) 
C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x ) ) )
854, 8, 12, 16, 23, 84findcard2 6557 . 2  |-  ( A  e.  Fin  ->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
8685impcom 123 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1287    e. wcel 1436   A.wral 2355   E.wrex 2356    u. cun 2986    C_ wss 2988   (/)c0 3275   {csn 3431   {cpr 3432   class class class wbr 3820   Fincfn 6409   supcsup 6621   RRcr 7293   0cc0 7294    < clt 7466    <_ cle 7467
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-er 6244  df-en 6410  df-fin 6412  df-sup 6623  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-rp 9067  df-iseq 9780  df-iexp 9854  df-cj 10172  df-re 10173  df-im 10174  df-rsqrt 10327  df-abs 10328
This theorem is referenced by:  fisumcvg3  10676
  Copyright terms: Public domain W3C validator