ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 Unicode version

Theorem fimaxre2 11030
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Distinct variable group:    x, A, y

Proof of Theorem fimaxre2
Dummy variables  s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3125 . . . 4  |-  ( w  =  (/)  ->  ( w 
C_  RR  <->  (/)  C_  RR )
)
2 raleq 2629 . . . . 5  |-  ( w  =  (/)  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (/)  y  <_  x ) )
32rexbidv 2439 . . . 4  |-  ( w  =  (/)  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) )
41, 3imbi12d 233 . . 3  |-  ( w  =  (/)  ->  ( ( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) ) )
5 sseq1 3125 . . . 4  |-  ( w  =  u  ->  (
w  C_  RR  <->  u  C_  RR ) )
6 raleq 2629 . . . . 5  |-  ( w  =  u  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  u  y  <_  x ) )
76rexbidv 2439 . . . 4  |-  ( w  =  u  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )
85, 7imbi12d 233 . . 3  |-  ( w  =  u  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) ) )
9 sseq1 3125 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( w  C_  RR 
<->  ( u  u.  {
v } )  C_  RR ) )
10 raleq 2629 . . . . 5  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (
u  u.  { v } ) y  <_  x ) )
1110rexbidv 2439 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
)
129, 11imbi12d 233 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( w 
C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x
)  <->  ( ( u  u.  { v } )  C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
) )
13 sseq1 3125 . . . 4  |-  ( w  =  A  ->  (
w  C_  RR  <->  A  C_  RR ) )
14 raleq 2629 . . . . 5  |-  ( w  =  A  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  A  y  <_  x ) )
1514rexbidv 2439 . . . 4  |-  ( w  =  A  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
1613, 15imbi12d 233 . . 3  |-  ( w  =  A  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
17 0re 7790 . . . . 5  |-  0  e.  RR
18 ral0 3469 . . . . 5  |-  A. y  e.  (/)  y  <_  0
19 breq2 3941 . . . . . . 7  |-  ( x  =  0  ->  (
y  <_  x  <->  y  <_  0 ) )
2019ralbidv 2438 . . . . . 6  |-  ( x  =  0  ->  ( A. y  e.  (/)  y  <_  x 
<-> 
A. y  e.  (/)  y  <_  0 ) )
2120rspcev 2793 . . . . 5  |-  ( ( 0  e.  RR  /\  A. y  e.  (/)  y  <_ 
0 )  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
2217, 18, 21mp2an 423 . . . 4  |-  E. x  e.  RR  A. y  e.  (/)  y  <_  x
2322a1i 9 . . 3  |-  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
24 unss 3255 . . . . . . . . . 10  |-  ( ( u  C_  RR  /\  {
v }  C_  RR ) 
<->  ( u  u.  {
v } )  C_  RR )
2524biimpri 132 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  ( u  C_  RR  /\ 
{ v }  C_  RR ) )
2625simpld 111 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  u  C_  RR )
2726adantl 275 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  u  C_  RR )
28 simplr 520 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  -> 
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
2927, 28mpd 13 . . . . . 6  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
30 breq2 3941 . . . . . . . 8  |-  ( x  =  s  ->  (
y  <_  x  <->  y  <_  s ) )
3130ralbidv 2438 . . . . . . 7  |-  ( x  =  s  ->  ( A. y  e.  u  y  <_  x  <->  A. y  e.  u  y  <_  s ) )
3231cbvrexv 2658 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  u  y  <_  x  <->  E. s  e.  RR  A. y  e.  u  y  <_  s )
3329, 32sylib 121 . . . . 5  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. s  e.  RR  A. y  e.  u  y  <_  s )
34 simprl 521 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  e.  RR )
3525simprd 113 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  { v }  C_  RR )
36 vex 2692 . . . . . . . . . 10  |-  v  e. 
_V
3736snss 3657 . . . . . . . . 9  |-  ( v  e.  RR  <->  { v }  C_  RR )
3835, 37sylibr 133 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  v  e.  RR )
3938ad2antlr 481 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  e.  RR )
40 maxcl 11014 . . . . . . 7  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
4134, 39, 40syl2anc 409 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
42 nfv 1509 . . . . . . . . . . 11  |-  F/ y  u  e.  Fin
43 nfv 1509 . . . . . . . . . . . 12  |-  F/ y  u  C_  RR
44 nfcv 2282 . . . . . . . . . . . . 13  |-  F/_ y RR
45 nfra1 2469 . . . . . . . . . . . . 13  |-  F/ y A. y  e.  u  y  <_  x
4644, 45nfrexxy 2475 . . . . . . . . . . . 12  |-  F/ y E. x  e.  RR  A. y  e.  u  y  <_  x
4743, 46nfim 1552 . . . . . . . . . . 11  |-  F/ y ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
4842, 47nfan 1545 . . . . . . . . . 10  |-  F/ y ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
49 nfv 1509 . . . . . . . . . 10  |-  F/ y ( u  u.  {
v } )  C_  RR
5048, 49nfan 1545 . . . . . . . . 9  |-  F/ y ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )
51 nfv 1509 . . . . . . . . . 10  |-  F/ y  s  e.  RR
52 nfra1 2469 . . . . . . . . . 10  |-  F/ y A. y  e.  u  y  <_  s
5351, 52nfan 1545 . . . . . . . . 9  |-  F/ y ( s  e.  RR  /\ 
A. y  e.  u  y  <_  s )
5450, 53nfan 1545 . . . . . . . 8  |-  F/ y ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )
55 simprr 522 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  s )
56 maxle1 11015 . . . . . . . . . . . . 13  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
5734, 39, 56syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
58 r19.27av 2570 . . . . . . . . . . . 12  |-  ( ( A. y  e.  u  y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
5955, 57, 58syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6059r19.21bi 2523 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6127ad2antrr 480 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  u  C_  RR )
62 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  u )
6361, 62sseldd 3103 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  RR )
6434adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  s  e.  RR )
6541adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
66 letr 7871 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  s  e.  RR  /\  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )  ->  ( ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6763, 64, 65, 66syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6860, 67mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
6968ex 114 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  (
y  e.  u  -> 
y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7054, 69ralrimi 2506 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
71 maxle2 11016 . . . . . . . . 9  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7234, 39, 71syl2anc 409 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
73 breq1 3940 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7473ralsng 3571 . . . . . . . . 9  |-  ( v  e.  RR  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7539, 74syl 14 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7672, 75mpbird 166 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
77 ralun 3263 . . . . . . 7  |-  ( ( A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  )  /\  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7870, 76, 77syl2anc 409 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
79 breq2 3941 . . . . . . . 8  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( y  <_  x 
<->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8079ralbidv 2438 . . . . . . 7  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( A. y  e.  ( u  u.  {
v } ) y  <_  x  <->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8180rspcev 2793 . . . . . 6  |-  ( ( sup ( { s ,  v } ,  RR ,  <  )  e.  RR  /\  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8241, 78, 81syl2anc 409 . . . . 5  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x )
8333, 82rexlimddv 2557 . . . 4  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8483exp31 362 . . 3  |-  ( u  e.  Fin  ->  (
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )  -> 
( ( u  u. 
{ v } ) 
C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x ) ) )
854, 8, 12, 16, 23, 84findcard2 6791 . 2  |-  ( A  e.  Fin  ->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
8685impcom 124 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   A.wral 2417   E.wrex 2418    u. cun 3074    C_ wss 3076   (/)c0 3368   {csn 3532   {cpr 3533   class class class wbr 3937   Fincfn 6642   supcsup 6877   RRcr 7643   0cc0 7644    < clt 7824    <_ cle 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-frec 6296  df-er 6437  df-en 6643  df-fin 6645  df-sup 6879  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-rp 9471  df-seqfrec 10250  df-exp 10324  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803
This theorem is referenced by:  fsum3cvg3  11197
  Copyright terms: Public domain W3C validator