ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 Unicode version

Theorem fimaxre2 11219
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Distinct variable group:    x, A, y

Proof of Theorem fimaxre2
Dummy variables  s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3178 . . . 4  |-  ( w  =  (/)  ->  ( w 
C_  RR  <->  (/)  C_  RR )
)
2 raleq 2672 . . . . 5  |-  ( w  =  (/)  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (/)  y  <_  x ) )
32rexbidv 2478 . . . 4  |-  ( w  =  (/)  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) )
41, 3imbi12d 234 . . 3  |-  ( w  =  (/)  ->  ( ( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) ) )
5 sseq1 3178 . . . 4  |-  ( w  =  u  ->  (
w  C_  RR  <->  u  C_  RR ) )
6 raleq 2672 . . . . 5  |-  ( w  =  u  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  u  y  <_  x ) )
76rexbidv 2478 . . . 4  |-  ( w  =  u  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )
85, 7imbi12d 234 . . 3  |-  ( w  =  u  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) ) )
9 sseq1 3178 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( w  C_  RR 
<->  ( u  u.  {
v } )  C_  RR ) )
10 raleq 2672 . . . . 5  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (
u  u.  { v } ) y  <_  x ) )
1110rexbidv 2478 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
)
129, 11imbi12d 234 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( w 
C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x
)  <->  ( ( u  u.  { v } )  C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
) )
13 sseq1 3178 . . . 4  |-  ( w  =  A  ->  (
w  C_  RR  <->  A  C_  RR ) )
14 raleq 2672 . . . . 5  |-  ( w  =  A  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  A  y  <_  x ) )
1514rexbidv 2478 . . . 4  |-  ( w  =  A  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
1613, 15imbi12d 234 . . 3  |-  ( w  =  A  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
17 0re 7948 . . . . 5  |-  0  e.  RR
18 ral0 3524 . . . . 5  |-  A. y  e.  (/)  y  <_  0
19 breq2 4004 . . . . . . 7  |-  ( x  =  0  ->  (
y  <_  x  <->  y  <_  0 ) )
2019ralbidv 2477 . . . . . 6  |-  ( x  =  0  ->  ( A. y  e.  (/)  y  <_  x 
<-> 
A. y  e.  (/)  y  <_  0 ) )
2120rspcev 2841 . . . . 5  |-  ( ( 0  e.  RR  /\  A. y  e.  (/)  y  <_ 
0 )  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
2217, 18, 21mp2an 426 . . . 4  |-  E. x  e.  RR  A. y  e.  (/)  y  <_  x
2322a1i 9 . . 3  |-  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
24 unss 3309 . . . . . . . . . 10  |-  ( ( u  C_  RR  /\  {
v }  C_  RR ) 
<->  ( u  u.  {
v } )  C_  RR )
2524biimpri 133 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  ( u  C_  RR  /\ 
{ v }  C_  RR ) )
2625simpld 112 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  u  C_  RR )
2726adantl 277 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  u  C_  RR )
28 simplr 528 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  -> 
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
2927, 28mpd 13 . . . . . 6  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
30 breq2 4004 . . . . . . . 8  |-  ( x  =  s  ->  (
y  <_  x  <->  y  <_  s ) )
3130ralbidv 2477 . . . . . . 7  |-  ( x  =  s  ->  ( A. y  e.  u  y  <_  x  <->  A. y  e.  u  y  <_  s ) )
3231cbvrexv 2704 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  u  y  <_  x  <->  E. s  e.  RR  A. y  e.  u  y  <_  s )
3329, 32sylib 122 . . . . 5  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. s  e.  RR  A. y  e.  u  y  <_  s )
34 simprl 529 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  e.  RR )
3525simprd 114 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  { v }  C_  RR )
36 vex 2740 . . . . . . . . . 10  |-  v  e. 
_V
3736snss 3726 . . . . . . . . 9  |-  ( v  e.  RR  <->  { v }  C_  RR )
3835, 37sylibr 134 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  v  e.  RR )
3938ad2antlr 489 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  e.  RR )
40 maxcl 11203 . . . . . . 7  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
4134, 39, 40syl2anc 411 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
42 nfv 1528 . . . . . . . . . . 11  |-  F/ y  u  e.  Fin
43 nfv 1528 . . . . . . . . . . . 12  |-  F/ y  u  C_  RR
44 nfcv 2319 . . . . . . . . . . . . 13  |-  F/_ y RR
45 nfra1 2508 . . . . . . . . . . . . 13  |-  F/ y A. y  e.  u  y  <_  x
4644, 45nfrexxy 2516 . . . . . . . . . . . 12  |-  F/ y E. x  e.  RR  A. y  e.  u  y  <_  x
4743, 46nfim 1572 . . . . . . . . . . 11  |-  F/ y ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
4842, 47nfan 1565 . . . . . . . . . 10  |-  F/ y ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
49 nfv 1528 . . . . . . . . . 10  |-  F/ y ( u  u.  {
v } )  C_  RR
5048, 49nfan 1565 . . . . . . . . 9  |-  F/ y ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )
51 nfv 1528 . . . . . . . . . 10  |-  F/ y  s  e.  RR
52 nfra1 2508 . . . . . . . . . 10  |-  F/ y A. y  e.  u  y  <_  s
5351, 52nfan 1565 . . . . . . . . 9  |-  F/ y ( s  e.  RR  /\ 
A. y  e.  u  y  <_  s )
5450, 53nfan 1565 . . . . . . . 8  |-  F/ y ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )
55 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  s )
56 maxle1 11204 . . . . . . . . . . . . 13  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
5734, 39, 56syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
58 r19.27av 2612 . . . . . . . . . . . 12  |-  ( ( A. y  e.  u  y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
5955, 57, 58syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6059r19.21bi 2565 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6127ad2antrr 488 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  u  C_  RR )
62 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  u )
6361, 62sseldd 3156 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  RR )
6434adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  s  e.  RR )
6541adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
66 letr 8030 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  s  e.  RR  /\  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )  ->  ( ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6763, 64, 65, 66syl3anc 1238 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6860, 67mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
6968ex 115 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  (
y  e.  u  -> 
y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7054, 69ralrimi 2548 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
71 maxle2 11205 . . . . . . . . 9  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7234, 39, 71syl2anc 411 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
73 breq1 4003 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7473ralsng 3631 . . . . . . . . 9  |-  ( v  e.  RR  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7539, 74syl 14 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7672, 75mpbird 167 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
77 ralun 3317 . . . . . . 7  |-  ( ( A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  )  /\  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7870, 76, 77syl2anc 411 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
79 breq2 4004 . . . . . . . 8  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( y  <_  x 
<->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8079ralbidv 2477 . . . . . . 7  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( A. y  e.  ( u  u.  {
v } ) y  <_  x  <->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8180rspcev 2841 . . . . . 6  |-  ( ( sup ( { s ,  v } ,  RR ,  <  )  e.  RR  /\  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8241, 78, 81syl2anc 411 . . . . 5  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x )
8333, 82rexlimddv 2599 . . . 4  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8483exp31 364 . . 3  |-  ( u  e.  Fin  ->  (
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )  -> 
( ( u  u. 
{ v } ) 
C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x ) ) )
854, 8, 12, 16, 23, 84findcard2 6883 . 2  |-  ( A  e.  Fin  ->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
8685impcom 125 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    u. cun 3127    C_ wss 3129   (/)c0 3422   {csn 3591   {cpr 3592   class class class wbr 4000   Fincfn 6734   supcsup 6975   RRcr 7801   0cc0 7802    < clt 7982    <_ cle 7983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-er 6529  df-en 6735  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  fsum3cvg3  11388
  Copyright terms: Public domain W3C validator