ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fimaxre2 Unicode version

Theorem fimaxre2 11190
Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre2  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Distinct variable group:    x, A, y

Proof of Theorem fimaxre2
Dummy variables  s  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq1 3170 . . . 4  |-  ( w  =  (/)  ->  ( w 
C_  RR  <->  (/)  C_  RR )
)
2 raleq 2665 . . . . 5  |-  ( w  =  (/)  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (/)  y  <_  x ) )
32rexbidv 2471 . . . 4  |-  ( w  =  (/)  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) )
41, 3imbi12d 233 . . 3  |-  ( w  =  (/)  ->  ( ( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x ) ) )
5 sseq1 3170 . . . 4  |-  ( w  =  u  ->  (
w  C_  RR  <->  u  C_  RR ) )
6 raleq 2665 . . . . 5  |-  ( w  =  u  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  u  y  <_  x ) )
76rexbidv 2471 . . . 4  |-  ( w  =  u  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )
85, 7imbi12d 233 . . 3  |-  ( w  =  u  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) ) )
9 sseq1 3170 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( w  C_  RR 
<->  ( u  u.  {
v } )  C_  RR ) )
10 raleq 2665 . . . . 5  |-  ( w  =  ( u  u. 
{ v } )  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  (
u  u.  { v } ) y  <_  x ) )
1110rexbidv 2471 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
)
129, 11imbi12d 233 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( w 
C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x
)  <->  ( ( u  u.  { v } )  C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x )
) )
13 sseq1 3170 . . . 4  |-  ( w  =  A  ->  (
w  C_  RR  <->  A  C_  RR ) )
14 raleq 2665 . . . . 5  |-  ( w  =  A  ->  ( A. y  e.  w  y  <_  x  <->  A. y  e.  A  y  <_  x ) )
1514rexbidv 2471 . . . 4  |-  ( w  =  A  ->  ( E. x  e.  RR  A. y  e.  w  y  <_  x  <->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
1613, 15imbi12d 233 . . 3  |-  ( w  =  A  ->  (
( w  C_  RR  ->  E. x  e.  RR  A. y  e.  w  y  <_  x )  <->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) ) )
17 0re 7920 . . . . 5  |-  0  e.  RR
18 ral0 3516 . . . . 5  |-  A. y  e.  (/)  y  <_  0
19 breq2 3993 . . . . . . 7  |-  ( x  =  0  ->  (
y  <_  x  <->  y  <_  0 ) )
2019ralbidv 2470 . . . . . 6  |-  ( x  =  0  ->  ( A. y  e.  (/)  y  <_  x 
<-> 
A. y  e.  (/)  y  <_  0 ) )
2120rspcev 2834 . . . . 5  |-  ( ( 0  e.  RR  /\  A. y  e.  (/)  y  <_ 
0 )  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
2217, 18, 21mp2an 424 . . . 4  |-  E. x  e.  RR  A. y  e.  (/)  y  <_  x
2322a1i 9 . . 3  |-  ( (/)  C_  RR  ->  E. x  e.  RR  A. y  e.  (/)  y  <_  x )
24 unss 3301 . . . . . . . . . 10  |-  ( ( u  C_  RR  /\  {
v }  C_  RR ) 
<->  ( u  u.  {
v } )  C_  RR )
2524biimpri 132 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  ( u  C_  RR  /\ 
{ v }  C_  RR ) )
2625simpld 111 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  u  C_  RR )
2726adantl 275 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  u  C_  RR )
28 simplr 525 . . . . . . 7  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  -> 
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
2927, 28mpd 13 . . . . . 6  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
30 breq2 3993 . . . . . . . 8  |-  ( x  =  s  ->  (
y  <_  x  <->  y  <_  s ) )
3130ralbidv 2470 . . . . . . 7  |-  ( x  =  s  ->  ( A. y  e.  u  y  <_  x  <->  A. y  e.  u  y  <_  s ) )
3231cbvrexv 2697 . . . . . 6  |-  ( E. x  e.  RR  A. y  e.  u  y  <_  x  <->  E. s  e.  RR  A. y  e.  u  y  <_  s )
3329, 32sylib 121 . . . . 5  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. s  e.  RR  A. y  e.  u  y  <_  s )
34 simprl 526 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  e.  RR )
3525simprd 113 . . . . . . . . 9  |-  ( ( u  u.  { v } )  C_  RR  ->  { v }  C_  RR )
36 vex 2733 . . . . . . . . . 10  |-  v  e. 
_V
3736snss 3709 . . . . . . . . 9  |-  ( v  e.  RR  <->  { v }  C_  RR )
3835, 37sylibr 133 . . . . . . . 8  |-  ( ( u  u.  { v } )  C_  RR  ->  v  e.  RR )
3938ad2antlr 486 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  e.  RR )
40 maxcl 11174 . . . . . . 7  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
4134, 39, 40syl2anc 409 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
42 nfv 1521 . . . . . . . . . . 11  |-  F/ y  u  e.  Fin
43 nfv 1521 . . . . . . . . . . . 12  |-  F/ y  u  C_  RR
44 nfcv 2312 . . . . . . . . . . . . 13  |-  F/_ y RR
45 nfra1 2501 . . . . . . . . . . . . 13  |-  F/ y A. y  e.  u  y  <_  x
4644, 45nfrexxy 2509 . . . . . . . . . . . 12  |-  F/ y E. x  e.  RR  A. y  e.  u  y  <_  x
4743, 46nfim 1565 . . . . . . . . . . 11  |-  F/ y ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )
4842, 47nfan 1558 . . . . . . . . . 10  |-  F/ y ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )
49 nfv 1521 . . . . . . . . . 10  |-  F/ y ( u  u.  {
v } )  C_  RR
5048, 49nfan 1558 . . . . . . . . 9  |-  F/ y ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )
51 nfv 1521 . . . . . . . . . 10  |-  F/ y  s  e.  RR
52 nfra1 2501 . . . . . . . . . 10  |-  F/ y A. y  e.  u  y  <_  s
5351, 52nfan 1558 . . . . . . . . 9  |-  F/ y ( s  e.  RR  /\ 
A. y  e.  u  y  <_  s )
5450, 53nfan 1558 . . . . . . . 8  |-  F/ y ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )
55 simprr 527 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  s )
56 maxle1 11175 . . . . . . . . . . . . 13  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
5734, 39, 56syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )
58 r19.27av 2605 . . . . . . . . . . . 12  |-  ( ( A. y  e.  u  y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
5955, 57, 58syl2anc 409 . . . . . . . . . . 11  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6059r19.21bi 2558 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6127ad2antrr 485 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  u  C_  RR )
62 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  u )
6361, 62sseldd 3148 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  e.  RR )
6434adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  s  e.  RR )
6541adantr 274 . . . . . . . . . . 11  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )
66 letr 8002 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  s  e.  RR  /\  sup ( { s ,  v } ,  RR ,  <  )  e.  RR )  ->  ( ( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6763, 64, 65, 66syl3anc 1233 . . . . . . . . . 10  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  (
( y  <_  s  /\  s  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
6860, 67mpd 13 . . . . . . . . 9  |-  ( ( ( ( ( u  e.  Fin  /\  (
u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  /\  y  e.  u )  ->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
6968ex 114 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  (
y  e.  u  -> 
y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7054, 69ralrimi 2541 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
71 maxle2 11176 . . . . . . . . 9  |-  ( ( s  e.  RR  /\  v  e.  RR )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7234, 39, 71syl2anc 409 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) )
73 breq1 3992 . . . . . . . . . 10  |-  ( y  =  v  ->  (
y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7473ralsng 3623 . . . . . . . . 9  |-  ( v  e.  RR  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7539, 74syl 14 . . . . . . . 8  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  ( A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  )  <->  v  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
7672, 75mpbird 166 . . . . . . 7  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
77 ralun 3309 . . . . . . 7  |-  ( ( A. y  e.  u  y  <_  sup ( { s ,  v } ,  RR ,  <  )  /\  A. y  e.  { v } y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
7870, 76, 77syl2anc 409 . . . . . 6  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )
79 breq2 3993 . . . . . . . 8  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( y  <_  x 
<->  y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8079ralbidv 2470 . . . . . . 7  |-  ( x  =  sup ( { s ,  v } ,  RR ,  <  )  ->  ( A. y  e.  ( u  u.  {
v } ) y  <_  x  <->  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) ) )
8180rspcev 2834 . . . . . 6  |-  ( ( sup ( { s ,  v } ,  RR ,  <  )  e.  RR  /\  A. y  e.  ( u  u.  {
v } ) y  <_  sup ( { s ,  v } ,  RR ,  <  ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8241, 78, 81syl2anc 409 . . . . 5  |-  ( ( ( ( u  e. 
Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x
) )  /\  (
u  u.  { v } )  C_  RR )  /\  ( s  e.  RR  /\  A. y  e.  u  y  <_  s ) )  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x )
8333, 82rexlimddv 2592 . . . 4  |-  ( ( ( u  e.  Fin  /\  ( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x ) )  /\  ( u  u. 
{ v } ) 
C_  RR )  ->  E. x  e.  RR  A. y  e.  ( u  u.  { v } ) y  <_  x
)
8483exp31 362 . . 3  |-  ( u  e.  Fin  ->  (
( u  C_  RR  ->  E. x  e.  RR  A. y  e.  u  y  <_  x )  -> 
( ( u  u. 
{ v } ) 
C_  RR  ->  E. x  e.  RR  A. y  e.  ( u  u.  {
v } ) y  <_  x ) ) )
854, 8, 12, 16, 23, 84findcard2 6867 . 2  |-  ( A  e.  Fin  ->  ( A  C_  RR  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
) )
8685impcom 124 1  |-  ( ( A  C_  RR  /\  A  e.  Fin )  ->  E. x  e.  RR  A. y  e.  A  y  <_  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    u. cun 3119    C_ wss 3121   (/)c0 3414   {csn 3583   {cpr 3584   class class class wbr 3989   Fincfn 6718   supcsup 6959   RRcr 7773   0cc0 7774    < clt 7954    <_ cle 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-po 4281  df-iso 4282  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-er 6513  df-en 6719  df-fin 6721  df-sup 6961  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-2 8937  df-3 8938  df-4 8939  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611  df-seqfrec 10402  df-exp 10476  df-cj 10806  df-re 10807  df-im 10808  df-rsqrt 10962  df-abs 10963
This theorem is referenced by:  fsum3cvg3  11359
  Copyright terms: Public domain W3C validator