| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fimaxre2 | Unicode version | ||
| Description: A nonempty finite set of real numbers has an upper bound. (Contributed by Jeff Madsen, 27-May-2011.) (Revised by Mario Carneiro, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| fimaxre2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1 3224 |
. . . 4
| |
| 2 | raleq 2705 |
. . . . 5
| |
| 3 | 2 | rexbidv 2509 |
. . . 4
|
| 4 | 1, 3 | imbi12d 234 |
. . 3
|
| 5 | sseq1 3224 |
. . . 4
| |
| 6 | raleq 2705 |
. . . . 5
| |
| 7 | 6 | rexbidv 2509 |
. . . 4
|
| 8 | 5, 7 | imbi12d 234 |
. . 3
|
| 9 | sseq1 3224 |
. . . 4
| |
| 10 | raleq 2705 |
. . . . 5
| |
| 11 | 10 | rexbidv 2509 |
. . . 4
|
| 12 | 9, 11 | imbi12d 234 |
. . 3
|
| 13 | sseq1 3224 |
. . . 4
| |
| 14 | raleq 2705 |
. . . . 5
| |
| 15 | 14 | rexbidv 2509 |
. . . 4
|
| 16 | 13, 15 | imbi12d 234 |
. . 3
|
| 17 | 0re 8107 |
. . . . 5
| |
| 18 | ral0 3570 |
. . . . 5
| |
| 19 | breq2 4063 |
. . . . . . 7
| |
| 20 | 19 | ralbidv 2508 |
. . . . . 6
|
| 21 | 20 | rspcev 2884 |
. . . . 5
|
| 22 | 17, 18, 21 | mp2an 426 |
. . . 4
|
| 23 | 22 | a1i 9 |
. . 3
|
| 24 | unss 3355 |
. . . . . . . . . 10
| |
| 25 | 24 | biimpri 133 |
. . . . . . . . 9
|
| 26 | 25 | simpld 112 |
. . . . . . . 8
|
| 27 | 26 | adantl 277 |
. . . . . . 7
|
| 28 | simplr 528 |
. . . . . . 7
| |
| 29 | 27, 28 | mpd 13 |
. . . . . 6
|
| 30 | breq2 4063 |
. . . . . . . 8
| |
| 31 | 30 | ralbidv 2508 |
. . . . . . 7
|
| 32 | 31 | cbvrexv 2743 |
. . . . . 6
|
| 33 | 29, 32 | sylib 122 |
. . . . 5
|
| 34 | simprl 529 |
. . . . . . 7
| |
| 35 | 25 | simprd 114 |
. . . . . . . . 9
|
| 36 | vex 2779 |
. . . . . . . . . 10
| |
| 37 | 36 | snss 3779 |
. . . . . . . . 9
|
| 38 | 35, 37 | sylibr 134 |
. . . . . . . 8
|
| 39 | 38 | ad2antlr 489 |
. . . . . . 7
|
| 40 | maxcl 11636 |
. . . . . . 7
| |
| 41 | 34, 39, 40 | syl2anc 411 |
. . . . . 6
|
| 42 | nfv 1552 |
. . . . . . . . . . 11
| |
| 43 | nfv 1552 |
. . . . . . . . . . . 12
| |
| 44 | nfcv 2350 |
. . . . . . . . . . . . 13
| |
| 45 | nfra1 2539 |
. . . . . . . . . . . . 13
| |
| 46 | 44, 45 | nfrexw 2547 |
. . . . . . . . . . . 12
|
| 47 | 43, 46 | nfim 1596 |
. . . . . . . . . . 11
|
| 48 | 42, 47 | nfan 1589 |
. . . . . . . . . 10
|
| 49 | nfv 1552 |
. . . . . . . . . 10
| |
| 50 | 48, 49 | nfan 1589 |
. . . . . . . . 9
|
| 51 | nfv 1552 |
. . . . . . . . . 10
| |
| 52 | nfra1 2539 |
. . . . . . . . . 10
| |
| 53 | 51, 52 | nfan 1589 |
. . . . . . . . 9
|
| 54 | 50, 53 | nfan 1589 |
. . . . . . . 8
|
| 55 | simprr 531 |
. . . . . . . . . . . 12
| |
| 56 | maxle1 11637 |
. . . . . . . . . . . . 13
| |
| 57 | 34, 39, 56 | syl2anc 411 |
. . . . . . . . . . . 12
|
| 58 | r19.27av 2643 |
. . . . . . . . . . . 12
| |
| 59 | 55, 57, 58 | syl2anc 411 |
. . . . . . . . . . 11
|
| 60 | 59 | r19.21bi 2596 |
. . . . . . . . . 10
|
| 61 | 27 | ad2antrr 488 |
. . . . . . . . . . . 12
|
| 62 | simpr 110 |
. . . . . . . . . . . 12
| |
| 63 | 61, 62 | sseldd 3202 |
. . . . . . . . . . 11
|
| 64 | 34 | adantr 276 |
. . . . . . . . . . 11
|
| 65 | 41 | adantr 276 |
. . . . . . . . . . 11
|
| 66 | letr 8190 |
. . . . . . . . . . 11
| |
| 67 | 63, 64, 65, 66 | syl3anc 1250 |
. . . . . . . . . 10
|
| 68 | 60, 67 | mpd 13 |
. . . . . . . . 9
|
| 69 | 68 | ex 115 |
. . . . . . . 8
|
| 70 | 54, 69 | ralrimi 2579 |
. . . . . . 7
|
| 71 | maxle2 11638 |
. . . . . . . . 9
| |
| 72 | 34, 39, 71 | syl2anc 411 |
. . . . . . . 8
|
| 73 | breq1 4062 |
. . . . . . . . . 10
| |
| 74 | 73 | ralsng 3683 |
. . . . . . . . 9
|
| 75 | 39, 74 | syl 14 |
. . . . . . . 8
|
| 76 | 72, 75 | mpbird 167 |
. . . . . . 7
|
| 77 | ralun 3363 |
. . . . . . 7
| |
| 78 | 70, 76, 77 | syl2anc 411 |
. . . . . 6
|
| 79 | breq2 4063 |
. . . . . . . 8
| |
| 80 | 79 | ralbidv 2508 |
. . . . . . 7
|
| 81 | 80 | rspcev 2884 |
. . . . . 6
|
| 82 | 41, 78, 81 | syl2anc 411 |
. . . . 5
|
| 83 | 33, 82 | rexlimddv 2630 |
. . . 4
|
| 84 | 83 | exp31 364 |
. . 3
|
| 85 | 4, 8, 12, 16, 23, 84 | findcard2 7012 |
. 2
|
| 86 | 85 | impcom 125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-frec 6500 df-er 6643 df-en 6851 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-rp 9811 df-seqfrec 10630 df-exp 10721 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 |
| This theorem is referenced by: fsum3cvg3 11822 |
| Copyright terms: Public domain | W3C validator |