ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rbropapd GIF version

Theorem rbropapd 6327
Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.)
Hypotheses
Ref Expression
rbropapd.1 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
rbropapd.2 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
Assertion
Ref Expression
rbropapd (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
Distinct variable groups:   𝑓,𝐹,𝑝   𝑃,𝑓,𝑝   𝑓,𝑊,𝑝   𝜒,𝑓,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑝)   𝜓(𝑓,𝑝)   𝑀(𝑓,𝑝)   𝑋(𝑓,𝑝)   𝑌(𝑓,𝑝)

Proof of Theorem rbropapd
StepHypRef Expression
1 df-br 4044 . . . 4 (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ 𝑀)
2 rbropapd.1 . . . . 5 (𝜑𝑀 = {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)})
32eleq2d 2274 . . . 4 (𝜑 → (⟨𝐹, 𝑃⟩ ∈ 𝑀 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)}))
41, 3bitrid 192 . . 3 (𝜑 → (𝐹𝑀𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)}))
5 breq12 4048 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝑓𝑊𝑝𝐹𝑊𝑃))
6 rbropapd.2 . . . . 5 ((𝑓 = 𝐹𝑝 = 𝑃) → (𝜓𝜒))
75, 6anbi12d 473 . . . 4 ((𝑓 = 𝐹𝑝 = 𝑃) → ((𝑓𝑊𝑝𝜓) ↔ (𝐹𝑊𝑃𝜒)))
87opelopabga 4308 . . 3 ((𝐹𝑋𝑃𝑌) → (⟨𝐹, 𝑃⟩ ∈ {⟨𝑓, 𝑝⟩ ∣ (𝑓𝑊𝑝𝜓)} ↔ (𝐹𝑊𝑃𝜒)))
94, 8sylan9bb 462 . 2 ((𝜑 ∧ (𝐹𝑋𝑃𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒)))
109ex 115 1 (𝜑 → ((𝐹𝑋𝑃𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃𝜒))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1372  wcel 2175  cop 3635   class class class wbr 4043  {copab 4103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-br 4044  df-opab 4105
This theorem is referenced by:  rbropap  6328
  Copyright terms: Public domain W3C validator