| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rbropapd | GIF version | ||
| Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
| Ref | Expression |
|---|---|
| rbropapd.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
| rbropapd.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rbropapd | ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4060 | . . . 4 ⊢ (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ 𝑀) | |
| 2 | rbropapd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
| 3 | 2 | eleq2d 2277 | . . . 4 ⊢ (𝜑 → (〈𝐹, 𝑃〉 ∈ 𝑀 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
| 4 | 1, 3 | bitrid 192 | . . 3 ⊢ (𝜑 → (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
| 5 | breq12 4064 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓𝑊𝑝 ↔ 𝐹𝑊𝑃)) | |
| 6 | rbropapd.2 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓𝑊𝑝 ∧ 𝜓) ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 8 | 7 | opelopabga 4327 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 9 | 4, 8 | sylan9bb 462 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 10 | 9 | ex 115 | 1 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2178 〈cop 3646 class class class wbr 4059 {copab 4120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 |
| This theorem is referenced by: rbropap 6352 |
| Copyright terms: Public domain | W3C validator |