| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rbropapd | GIF version | ||
| Description: Properties of a pair in an extended binary relation. (Contributed by Alexander van der Vekens, 30-Oct-2017.) |
| Ref | Expression |
|---|---|
| rbropapd.1 | ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) |
| rbropapd.2 | ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rbropapd | ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4044 | . . . 4 ⊢ (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ 𝑀) | |
| 2 | rbropapd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 = {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)}) | |
| 3 | 2 | eleq2d 2274 | . . . 4 ⊢ (𝜑 → (〈𝐹, 𝑃〉 ∈ 𝑀 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
| 4 | 1, 3 | bitrid 192 | . . 3 ⊢ (𝜑 → (𝐹𝑀𝑃 ↔ 〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)})) |
| 5 | breq12 4048 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝑓𝑊𝑝 ↔ 𝐹𝑊𝑃)) | |
| 6 | rbropapd.2 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → (𝜓 ↔ 𝜒)) | |
| 7 | 5, 6 | anbi12d 473 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑝 = 𝑃) → ((𝑓𝑊𝑝 ∧ 𝜓) ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 8 | 7 | opelopabga 4308 | . . 3 ⊢ ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (〈𝐹, 𝑃〉 ∈ {〈𝑓, 𝑝〉 ∣ (𝑓𝑊𝑝 ∧ 𝜓)} ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 9 | 4, 8 | sylan9bb 462 | . 2 ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌)) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒))) |
| 10 | 9 | ex 115 | 1 ⊢ (𝜑 → ((𝐹 ∈ 𝑋 ∧ 𝑃 ∈ 𝑌) → (𝐹𝑀𝑃 ↔ (𝐹𝑊𝑃 ∧ 𝜒)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 〈cop 3635 class class class wbr 4043 {copab 4103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 |
| This theorem is referenced by: rbropap 6328 |
| Copyright terms: Public domain | W3C validator |