| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version | ||
| Description: The union of |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemi1.3 |
|
| tfrlemi1.4 |
|
| tfrlemi1.5 |
|
| Ref | Expression |
|---|---|
| tfrlemiubacc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.1 |
. . . . . . . . 9
| |
| 2 | tfrlemisucfn.2 |
. . . . . . . . 9
| |
| 3 | tfrlemi1.3 |
. . . . . . . . 9
| |
| 4 | tfrlemi1.4 |
. . . . . . . . 9
| |
| 5 | tfrlemi1.5 |
. . . . . . . . 9
| |
| 6 | 1, 2, 3, 4, 5 | tfrlemibfn 6414 |
. . . . . . . 8
|
| 7 | fndm 5373 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 1, 2, 3, 4, 5 | tfrlemibacc 6412 |
. . . . . . . . . 10
|
| 10 | 9 | unissd 3874 |
. . . . . . . . 9
|
| 11 | 1 | recsfval 6401 |
. . . . . . . . 9
|
| 12 | 10, 11 | sseqtrrdi 3242 |
. . . . . . . 8
|
| 13 | dmss 4877 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 8, 14 | eqsstrrd 3230 |
. . . . . 6
|
| 16 | 15 | sselda 3193 |
. . . . 5
|
| 17 | 1 | tfrlem9 6405 |
. . . . 5
|
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 1 | tfrlem7 6403 |
. . . . . 6
|
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | 12 | adantr 276 |
. . . . 5
|
| 22 | 8 | eleq2d 2275 |
. . . . . 6
|
| 23 | 22 | biimpar 297 |
. . . . 5
|
| 24 | funssfv 5602 |
. . . . 5
| |
| 25 | 20, 21, 23, 24 | syl3anc 1250 |
. . . 4
|
| 26 | eloni 4422 |
. . . . . . . . 9
| |
| 27 | 4, 26 | syl 14 |
. . . . . . . 8
|
| 28 | ordelss 4426 |
. . . . . . . 8
| |
| 29 | 27, 28 | sylan 283 |
. . . . . . 7
|
| 30 | 8 | adantr 276 |
. . . . . . 7
|
| 31 | 29, 30 | sseqtrrd 3232 |
. . . . . 6
|
| 32 | fun2ssres 5314 |
. . . . . 6
| |
| 33 | 20, 21, 31, 32 | syl3anc 1250 |
. . . . 5
|
| 34 | 33 | fveq2d 5580 |
. . . 4
|
| 35 | 18, 25, 34 | 3eqtr3d 2246 |
. . 3
|
| 36 | 35 | ralrimiva 2579 |
. 2
|
| 37 | fveq2 5576 |
. . . 4
| |
| 38 | reseq2 4954 |
. . . . 5
| |
| 39 | 38 | fveq2d 5580 |
. . . 4
|
| 40 | 37, 39 | eqeq12d 2220 |
. . 3
|
| 41 | 40 | cbvralv 2738 |
. 2
|
| 42 | 36, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-recs 6391 |
| This theorem is referenced by: tfrlemiex 6417 |
| Copyright terms: Public domain | W3C validator |