| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version | ||
| Description: The union of |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemi1.3 |
|
| tfrlemi1.4 |
|
| tfrlemi1.5 |
|
| Ref | Expression |
|---|---|
| tfrlemiubacc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.1 |
. . . . . . . . 9
| |
| 2 | tfrlemisucfn.2 |
. . . . . . . . 9
| |
| 3 | tfrlemi1.3 |
. . . . . . . . 9
| |
| 4 | tfrlemi1.4 |
. . . . . . . . 9
| |
| 5 | tfrlemi1.5 |
. . . . . . . . 9
| |
| 6 | 1, 2, 3, 4, 5 | tfrlemibfn 6395 |
. . . . . . . 8
|
| 7 | fndm 5358 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 1, 2, 3, 4, 5 | tfrlemibacc 6393 |
. . . . . . . . . 10
|
| 10 | 9 | unissd 3864 |
. . . . . . . . 9
|
| 11 | 1 | recsfval 6382 |
. . . . . . . . 9
|
| 12 | 10, 11 | sseqtrrdi 3233 |
. . . . . . . 8
|
| 13 | dmss 4866 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 8, 14 | eqsstrrd 3221 |
. . . . . 6
|
| 16 | 15 | sselda 3184 |
. . . . 5
|
| 17 | 1 | tfrlem9 6386 |
. . . . 5
|
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 1 | tfrlem7 6384 |
. . . . . 6
|
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | 12 | adantr 276 |
. . . . 5
|
| 22 | 8 | eleq2d 2266 |
. . . . . 6
|
| 23 | 22 | biimpar 297 |
. . . . 5
|
| 24 | funssfv 5587 |
. . . . 5
| |
| 25 | 20, 21, 23, 24 | syl3anc 1249 |
. . . 4
|
| 26 | eloni 4411 |
. . . . . . . . 9
| |
| 27 | 4, 26 | syl 14 |
. . . . . . . 8
|
| 28 | ordelss 4415 |
. . . . . . . 8
| |
| 29 | 27, 28 | sylan 283 |
. . . . . . 7
|
| 30 | 8 | adantr 276 |
. . . . . . 7
|
| 31 | 29, 30 | sseqtrrd 3223 |
. . . . . 6
|
| 32 | fun2ssres 5302 |
. . . . . 6
| |
| 33 | 20, 21, 31, 32 | syl3anc 1249 |
. . . . 5
|
| 34 | 33 | fveq2d 5565 |
. . . 4
|
| 35 | 18, 25, 34 | 3eqtr3d 2237 |
. . 3
|
| 36 | 35 | ralrimiva 2570 |
. 2
|
| 37 | fveq2 5561 |
. . . 4
| |
| 38 | reseq2 4942 |
. . . . 5
| |
| 39 | 38 | fveq2d 5565 |
. . . 4
|
| 40 | 37, 39 | eqeq12d 2211 |
. . 3
|
| 41 | 40 | cbvralv 2729 |
. 2
|
| 42 | 36, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-recs 6372 |
| This theorem is referenced by: tfrlemiex 6398 |
| Copyright terms: Public domain | W3C validator |