Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version |
Description: The union of satisfies the recursion rule (lemma for tfrlemi1 6273). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | |
tfrlemisucfn.2 | |
tfrlemi1.3 | |
tfrlemi1.4 | |
tfrlemi1.5 |
Ref | Expression |
---|---|
tfrlemiubacc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.1 | . . . . . . . . 9 | |
2 | tfrlemisucfn.2 | . . . . . . . . 9 | |
3 | tfrlemi1.3 | . . . . . . . . 9 | |
4 | tfrlemi1.4 | . . . . . . . . 9 | |
5 | tfrlemi1.5 | . . . . . . . . 9 | |
6 | 1, 2, 3, 4, 5 | tfrlemibfn 6269 | . . . . . . . 8 |
7 | fndm 5266 | . . . . . . . 8 | |
8 | 6, 7 | syl 14 | . . . . . . 7 |
9 | 1, 2, 3, 4, 5 | tfrlemibacc 6267 | . . . . . . . . . 10 |
10 | 9 | unissd 3796 | . . . . . . . . 9 |
11 | 1 | recsfval 6256 | . . . . . . . . 9 recs |
12 | 10, 11 | sseqtrrdi 3177 | . . . . . . . 8 recs |
13 | dmss 4782 | . . . . . . . 8 recs recs | |
14 | 12, 13 | syl 14 | . . . . . . 7 recs |
15 | 8, 14 | eqsstrrd 3165 | . . . . . 6 recs |
16 | 15 | sselda 3128 | . . . . 5 recs |
17 | 1 | tfrlem9 6260 | . . . . 5 recs recs recs |
18 | 16, 17 | syl 14 | . . . 4 recs recs |
19 | 1 | tfrlem7 6258 | . . . . . 6 recs |
20 | 19 | a1i 9 | . . . . 5 recs |
21 | 12 | adantr 274 | . . . . 5 recs |
22 | 8 | eleq2d 2227 | . . . . . 6 |
23 | 22 | biimpar 295 | . . . . 5 |
24 | funssfv 5491 | . . . . 5 recs recs recs | |
25 | 20, 21, 23, 24 | syl3anc 1220 | . . . 4 recs |
26 | eloni 4334 | . . . . . . . . 9 | |
27 | 4, 26 | syl 14 | . . . . . . . 8 |
28 | ordelss 4338 | . . . . . . . 8 | |
29 | 27, 28 | sylan 281 | . . . . . . 7 |
30 | 8 | adantr 274 | . . . . . . 7 |
31 | 29, 30 | sseqtrrd 3167 | . . . . . 6 |
32 | fun2ssres 5210 | . . . . . 6 recs recs recs | |
33 | 20, 21, 31, 32 | syl3anc 1220 | . . . . 5 recs |
34 | 33 | fveq2d 5469 | . . . 4 recs |
35 | 18, 25, 34 | 3eqtr3d 2198 | . . 3 |
36 | 35 | ralrimiva 2530 | . 2 |
37 | fveq2 5465 | . . . 4 | |
38 | reseq2 4858 | . . . . 5 | |
39 | 38 | fveq2d 5469 | . . . 4 |
40 | 37, 39 | eqeq12d 2172 | . . 3 |
41 | 40 | cbvralv 2680 | . 2 |
42 | 36, 41 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wal 1333 wceq 1335 wex 1472 wcel 2128 cab 2143 wral 2435 wrex 2436 cvv 2712 cun 3100 wss 3102 csn 3560 cop 3563 cuni 3772 word 4321 con0 4322 cdm 4583 cres 4585 wfun 5161 wfn 5162 cfv 5167 recscrecs 6245 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4252 df-iord 4325 df-on 4327 df-suc 4330 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-recs 6246 |
This theorem is referenced by: tfrlemiex 6272 |
Copyright terms: Public domain | W3C validator |