| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version | ||
| Description: The union of |
| Ref | Expression |
|---|---|
| tfrlemisucfn.1 |
|
| tfrlemisucfn.2 |
|
| tfrlemi1.3 |
|
| tfrlemi1.4 |
|
| tfrlemi1.5 |
|
| Ref | Expression |
|---|---|
| tfrlemiubacc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlemisucfn.1 |
. . . . . . . . 9
| |
| 2 | tfrlemisucfn.2 |
. . . . . . . . 9
| |
| 3 | tfrlemi1.3 |
. . . . . . . . 9
| |
| 4 | tfrlemi1.4 |
. . . . . . . . 9
| |
| 5 | tfrlemi1.5 |
. . . . . . . . 9
| |
| 6 | 1, 2, 3, 4, 5 | tfrlemibfn 6474 |
. . . . . . . 8
|
| 7 | fndm 5420 |
. . . . . . . 8
| |
| 8 | 6, 7 | syl 14 |
. . . . . . 7
|
| 9 | 1, 2, 3, 4, 5 | tfrlemibacc 6472 |
. . . . . . . . . 10
|
| 10 | 9 | unissd 3912 |
. . . . . . . . 9
|
| 11 | 1 | recsfval 6461 |
. . . . . . . . 9
|
| 12 | 10, 11 | sseqtrrdi 3273 |
. . . . . . . 8
|
| 13 | dmss 4922 |
. . . . . . . 8
| |
| 14 | 12, 13 | syl 14 |
. . . . . . 7
|
| 15 | 8, 14 | eqsstrrd 3261 |
. . . . . 6
|
| 16 | 15 | sselda 3224 |
. . . . 5
|
| 17 | 1 | tfrlem9 6465 |
. . . . 5
|
| 18 | 16, 17 | syl 14 |
. . . 4
|
| 19 | 1 | tfrlem7 6463 |
. . . . . 6
|
| 20 | 19 | a1i 9 |
. . . . 5
|
| 21 | 12 | adantr 276 |
. . . . 5
|
| 22 | 8 | eleq2d 2299 |
. . . . . 6
|
| 23 | 22 | biimpar 297 |
. . . . 5
|
| 24 | funssfv 5653 |
. . . . 5
| |
| 25 | 20, 21, 23, 24 | syl3anc 1271 |
. . . 4
|
| 26 | eloni 4466 |
. . . . . . . . 9
| |
| 27 | 4, 26 | syl 14 |
. . . . . . . 8
|
| 28 | ordelss 4470 |
. . . . . . . 8
| |
| 29 | 27, 28 | sylan 283 |
. . . . . . 7
|
| 30 | 8 | adantr 276 |
. . . . . . 7
|
| 31 | 29, 30 | sseqtrrd 3263 |
. . . . . 6
|
| 32 | fun2ssres 5361 |
. . . . . 6
| |
| 33 | 20, 21, 31, 32 | syl3anc 1271 |
. . . . 5
|
| 34 | 33 | fveq2d 5631 |
. . . 4
|
| 35 | 18, 25, 34 | 3eqtr3d 2270 |
. . 3
|
| 36 | 35 | ralrimiva 2603 |
. 2
|
| 37 | fveq2 5627 |
. . . 4
| |
| 38 | reseq2 5000 |
. . . . 5
| |
| 39 | 38 | fveq2d 5631 |
. . . 4
|
| 40 | 37, 39 | eqeq12d 2244 |
. . 3
|
| 41 | 40 | cbvralv 2765 |
. 2
|
| 42 | 36, 41 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-recs 6451 |
| This theorem is referenced by: tfrlemiex 6477 |
| Copyright terms: Public domain | W3C validator |