ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiubacc Unicode version

Theorem tfrlemiubacc 6309
Description: The union of  B satisfies the recursion rule (lemma for tfrlemi1 6311). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemiubacc  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
Distinct variable groups:    f, g, h, u, w, x, y, z, A    f, F, g, h, u, w, x, y, z    ph, w, y    u, B, w, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, u, f)    B( x, y)

Proof of Theorem tfrlemiubacc
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
3 tfrlemi1.3 . . . . . . . . 9  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
4 tfrlemi1.4 . . . . . . . . 9  |-  ( ph  ->  x  e.  On )
5 tfrlemi1.5 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
61, 2, 3, 4, 5tfrlemibfn 6307 . . . . . . . 8  |-  ( ph  ->  U. B  Fn  x
)
7 fndm 5297 . . . . . . . 8  |-  ( U. B  Fn  x  ->  dom  U. B  =  x
)
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  =  x )
91, 2, 3, 4, 5tfrlemibacc 6305 . . . . . . . . . 10  |-  ( ph  ->  B  C_  A )
109unissd 3820 . . . . . . . . 9  |-  ( ph  ->  U. B  C_  U. A
)
111recsfval 6294 . . . . . . . . 9  |- recs ( F )  =  U. A
1210, 11sseqtrrdi 3196 . . . . . . . 8  |-  ( ph  ->  U. B  C_ recs ( F ) )
13 dmss 4810 . . . . . . . 8  |-  ( U. B  C_ recs ( F )  ->  dom  U. B  C_  dom recs ( F ) )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  C_  dom recs ( F ) )
158, 14eqsstrrd 3184 . . . . . 6  |-  ( ph  ->  x  C_  dom recs ( F ) )
1615sselda 3147 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  w  e.  dom recs ( F ) )
171tfrlem9 6298 . . . . 5  |-  ( w  e.  dom recs ( F
)  ->  (recs ( F ) `  w
)  =  ( F `
 (recs ( F )  |`  w )
) )
1816, 17syl 14 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F ) `  w
)  =  ( F `
 (recs ( F )  |`  w )
) )
191tfrlem7 6296 . . . . . 6  |-  Fun recs ( F )
2019a1i 9 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  Fun recs ( F ) )
2112adantr 274 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  U. B  C_ recs
( F ) )
228eleq2d 2240 . . . . . 6  |-  ( ph  ->  ( w  e.  dom  U. B  <->  w  e.  x
) )
2322biimpar 295 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  w  e.  dom  U. B )
24 funssfv 5522 . . . . 5  |-  ( ( Fun recs ( F )  /\  U. B  C_ recs ( F )  /\  w  e.  dom  U. B )  ->  (recs ( F ) `  w )  =  ( U. B `  w ) )
2520, 21, 23, 24syl3anc 1233 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F ) `  w
)  =  ( U. B `  w )
)
26 eloni 4360 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  x )
274, 26syl 14 . . . . . . . 8  |-  ( ph  ->  Ord  x )
28 ordelss 4364 . . . . . . . 8  |-  ( ( Ord  x  /\  w  e.  x )  ->  w  C_  x )
2927, 28sylan 281 . . . . . . 7  |-  ( (
ph  /\  w  e.  x )  ->  w  C_  x )
308adantr 274 . . . . . . 7  |-  ( (
ph  /\  w  e.  x )  ->  dom  U. B  =  x )
3129, 30sseqtrrd 3186 . . . . . 6  |-  ( (
ph  /\  w  e.  x )  ->  w  C_ 
dom  U. B )
32 fun2ssres 5241 . . . . . 6  |-  ( ( Fun recs ( F )  /\  U. B  C_ recs ( F )  /\  w  C_ 
dom  U. B )  -> 
(recs ( F )  |`  w )  =  ( U. B  |`  w
) )
3320, 21, 31, 32syl3anc 1233 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F )  |`  w
)  =  ( U. B  |`  w ) )
3433fveq2d 5500 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  ( F `  (recs ( F )  |`  w
) )  =  ( F `  ( U. B  |`  w ) ) )
3518, 25, 343eqtr3d 2211 . . 3  |-  ( (
ph  /\  w  e.  x )  ->  ( U. B `  w )  =  ( F `  ( U. B  |`  w
) ) )
3635ralrimiva 2543 . 2  |-  ( ph  ->  A. w  e.  x  ( U. B `  w
)  =  ( F `
 ( U. B  |`  w ) ) )
37 fveq2 5496 . . . 4  |-  ( u  =  w  ->  ( U. B `  u )  =  ( U. B `  w ) )
38 reseq2 4886 . . . . 5  |-  ( u  =  w  ->  ( U. B  |`  u )  =  ( U. B  |`  w ) )
3938fveq2d 5500 . . . 4  |-  ( u  =  w  ->  ( F `  ( U. B  |`  u ) )  =  ( F `  ( U. B  |`  w
) ) )
4037, 39eqeq12d 2185 . . 3  |-  ( u  =  w  ->  (
( U. B `  u )  =  ( F `  ( U. B  |`  u ) )  <-> 
( U. B `  w )  =  ( F `  ( U. B  |`  w ) ) ) )
4140cbvralv 2696 . 2  |-  ( A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) )  <->  A. w  e.  x  ( U. B `  w )  =  ( F `  ( U. B  |`  w
) ) )
4236, 41sylibr 133 1  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973   A.wal 1346    = wceq 1348   E.wex 1485    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730    u. cun 3119    C_ wss 3121   {csn 3583   <.cop 3586   U.cuni 3796   Ord word 4347   Oncon0 4348   dom cdm 4611    |` cres 4613   Fun wfun 5192    Fn wfn 5193   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-recs 6284
This theorem is referenced by:  tfrlemiex  6310
  Copyright terms: Public domain W3C validator