Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlemiubacc | Unicode version |
Description: The union of satisfies the recursion rule (lemma for tfrlemi1 6311). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.) |
Ref | Expression |
---|---|
tfrlemisucfn.1 | |
tfrlemisucfn.2 | |
tfrlemi1.3 | |
tfrlemi1.4 | |
tfrlemi1.5 |
Ref | Expression |
---|---|
tfrlemiubacc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlemisucfn.1 | . . . . . . . . 9 | |
2 | tfrlemisucfn.2 | . . . . . . . . 9 | |
3 | tfrlemi1.3 | . . . . . . . . 9 | |
4 | tfrlemi1.4 | . . . . . . . . 9 | |
5 | tfrlemi1.5 | . . . . . . . . 9 | |
6 | 1, 2, 3, 4, 5 | tfrlemibfn 6307 | . . . . . . . 8 |
7 | fndm 5297 | . . . . . . . 8 | |
8 | 6, 7 | syl 14 | . . . . . . 7 |
9 | 1, 2, 3, 4, 5 | tfrlemibacc 6305 | . . . . . . . . . 10 |
10 | 9 | unissd 3820 | . . . . . . . . 9 |
11 | 1 | recsfval 6294 | . . . . . . . . 9 recs |
12 | 10, 11 | sseqtrrdi 3196 | . . . . . . . 8 recs |
13 | dmss 4810 | . . . . . . . 8 recs recs | |
14 | 12, 13 | syl 14 | . . . . . . 7 recs |
15 | 8, 14 | eqsstrrd 3184 | . . . . . 6 recs |
16 | 15 | sselda 3147 | . . . . 5 recs |
17 | 1 | tfrlem9 6298 | . . . . 5 recs recs recs |
18 | 16, 17 | syl 14 | . . . 4 recs recs |
19 | 1 | tfrlem7 6296 | . . . . . 6 recs |
20 | 19 | a1i 9 | . . . . 5 recs |
21 | 12 | adantr 274 | . . . . 5 recs |
22 | 8 | eleq2d 2240 | . . . . . 6 |
23 | 22 | biimpar 295 | . . . . 5 |
24 | funssfv 5522 | . . . . 5 recs recs recs | |
25 | 20, 21, 23, 24 | syl3anc 1233 | . . . 4 recs |
26 | eloni 4360 | . . . . . . . . 9 | |
27 | 4, 26 | syl 14 | . . . . . . . 8 |
28 | ordelss 4364 | . . . . . . . 8 | |
29 | 27, 28 | sylan 281 | . . . . . . 7 |
30 | 8 | adantr 274 | . . . . . . 7 |
31 | 29, 30 | sseqtrrd 3186 | . . . . . 6 |
32 | fun2ssres 5241 | . . . . . 6 recs recs recs | |
33 | 20, 21, 31, 32 | syl3anc 1233 | . . . . 5 recs |
34 | 33 | fveq2d 5500 | . . . 4 recs |
35 | 18, 25, 34 | 3eqtr3d 2211 | . . 3 |
36 | 35 | ralrimiva 2543 | . 2 |
37 | fveq2 5496 | . . . 4 | |
38 | reseq2 4886 | . . . . 5 | |
39 | 38 | fveq2d 5500 | . . . 4 |
40 | 37, 39 | eqeq12d 2185 | . . 3 |
41 | 40 | cbvralv 2696 | . 2 |
42 | 36, 41 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wal 1346 wceq 1348 wex 1485 wcel 2141 cab 2156 wral 2448 wrex 2449 cvv 2730 cun 3119 wss 3121 csn 3583 cop 3586 cuni 3796 word 4347 con0 4348 cdm 4611 cres 4613 wfun 5192 wfn 5193 cfv 5198 recscrecs 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-recs 6284 |
This theorem is referenced by: tfrlemiex 6310 |
Copyright terms: Public domain | W3C validator |