ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemiubacc Unicode version

Theorem tfrlemiubacc 6388
Description: The union of  B satisfies the recursion rule (lemma for tfrlemi1 6390). (Contributed by Jim Kingdon, 22-Apr-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemiubacc  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
Distinct variable groups:    f, g, h, u, w, x, y, z, A    f, F, g, h, u, w, x, y, z    ph, w, y    u, B, w, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, u, f)    B( x, y)

Proof of Theorem tfrlemiubacc
StepHypRef Expression
1 tfrlemisucfn.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
2 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
3 tfrlemi1.3 . . . . . . . . 9  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
4 tfrlemi1.4 . . . . . . . . 9  |-  ( ph  ->  x  e.  On )
5 tfrlemi1.5 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
61, 2, 3, 4, 5tfrlemibfn 6386 . . . . . . . 8  |-  ( ph  ->  U. B  Fn  x
)
7 fndm 5357 . . . . . . . 8  |-  ( U. B  Fn  x  ->  dom  U. B  =  x
)
86, 7syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  =  x )
91, 2, 3, 4, 5tfrlemibacc 6384 . . . . . . . . . 10  |-  ( ph  ->  B  C_  A )
109unissd 3863 . . . . . . . . 9  |-  ( ph  ->  U. B  C_  U. A
)
111recsfval 6373 . . . . . . . . 9  |- recs ( F )  =  U. A
1210, 11sseqtrrdi 3232 . . . . . . . 8  |-  ( ph  ->  U. B  C_ recs ( F ) )
13 dmss 4865 . . . . . . . 8  |-  ( U. B  C_ recs ( F )  ->  dom  U. B  C_  dom recs ( F ) )
1412, 13syl 14 . . . . . . 7  |-  ( ph  ->  dom  U. B  C_  dom recs ( F ) )
158, 14eqsstrrd 3220 . . . . . 6  |-  ( ph  ->  x  C_  dom recs ( F ) )
1615sselda 3183 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  w  e.  dom recs ( F ) )
171tfrlem9 6377 . . . . 5  |-  ( w  e.  dom recs ( F
)  ->  (recs ( F ) `  w
)  =  ( F `
 (recs ( F )  |`  w )
) )
1816, 17syl 14 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F ) `  w
)  =  ( F `
 (recs ( F )  |`  w )
) )
191tfrlem7 6375 . . . . . 6  |-  Fun recs ( F )
2019a1i 9 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  Fun recs ( F ) )
2112adantr 276 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  U. B  C_ recs
( F ) )
228eleq2d 2266 . . . . . 6  |-  ( ph  ->  ( w  e.  dom  U. B  <->  w  e.  x
) )
2322biimpar 297 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  w  e.  dom  U. B )
24 funssfv 5584 . . . . 5  |-  ( ( Fun recs ( F )  /\  U. B  C_ recs ( F )  /\  w  e.  dom  U. B )  ->  (recs ( F ) `  w )  =  ( U. B `  w ) )
2520, 21, 23, 24syl3anc 1249 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F ) `  w
)  =  ( U. B `  w )
)
26 eloni 4410 . . . . . . . . 9  |-  ( x  e.  On  ->  Ord  x )
274, 26syl 14 . . . . . . . 8  |-  ( ph  ->  Ord  x )
28 ordelss 4414 . . . . . . . 8  |-  ( ( Ord  x  /\  w  e.  x )  ->  w  C_  x )
2927, 28sylan 283 . . . . . . 7  |-  ( (
ph  /\  w  e.  x )  ->  w  C_  x )
308adantr 276 . . . . . . 7  |-  ( (
ph  /\  w  e.  x )  ->  dom  U. B  =  x )
3129, 30sseqtrrd 3222 . . . . . 6  |-  ( (
ph  /\  w  e.  x )  ->  w  C_ 
dom  U. B )
32 fun2ssres 5301 . . . . . 6  |-  ( ( Fun recs ( F )  /\  U. B  C_ recs ( F )  /\  w  C_ 
dom  U. B )  -> 
(recs ( F )  |`  w )  =  ( U. B  |`  w
) )
3320, 21, 31, 32syl3anc 1249 . . . . 5  |-  ( (
ph  /\  w  e.  x )  ->  (recs ( F )  |`  w
)  =  ( U. B  |`  w ) )
3433fveq2d 5562 . . . 4  |-  ( (
ph  /\  w  e.  x )  ->  ( F `  (recs ( F )  |`  w
) )  =  ( F `  ( U. B  |`  w ) ) )
3518, 25, 343eqtr3d 2237 . . 3  |-  ( (
ph  /\  w  e.  x )  ->  ( U. B `  w )  =  ( F `  ( U. B  |`  w
) ) )
3635ralrimiva 2570 . 2  |-  ( ph  ->  A. w  e.  x  ( U. B `  w
)  =  ( F `
 ( U. B  |`  w ) ) )
37 fveq2 5558 . . . 4  |-  ( u  =  w  ->  ( U. B `  u )  =  ( U. B `  w ) )
38 reseq2 4941 . . . . 5  |-  ( u  =  w  ->  ( U. B  |`  u )  =  ( U. B  |`  w ) )
3938fveq2d 5562 . . . 4  |-  ( u  =  w  ->  ( F `  ( U. B  |`  u ) )  =  ( F `  ( U. B  |`  w
) ) )
4037, 39eqeq12d 2211 . . 3  |-  ( u  =  w  ->  (
( U. B `  u )  =  ( F `  ( U. B  |`  u ) )  <-> 
( U. B `  w )  =  ( F `  ( U. B  |`  w ) ) ) )
4140cbvralv 2729 . 2  |-  ( A. u  e.  x  ( U. B `  u )  =  ( F `  ( U. B  |`  u
) )  <->  A. w  e.  x  ( U. B `  w )  =  ( F `  ( U. B  |`  w
) ) )
4236, 41sylibr 134 1  |-  ( ph  ->  A. u  e.  x  ( U. B `  u
)  =  ( F `
 ( U. B  |`  u ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   _Vcvv 2763    u. cun 3155    C_ wss 3157   {csn 3622   <.cop 3625   U.cuni 3839   Ord word 4397   Oncon0 4398   dom cdm 4663    |` cres 4665   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfrlemiex  6389
  Copyright terms: Public domain W3C validator