Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem8 | Unicode version |
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem8 | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 | |
2 | 1 | tfrlem3 6287 | . . . . . . . 8 |
3 | 2 | abeq2i 2281 | . . . . . . 7 |
4 | fndm 5295 | . . . . . . . . . . 11 | |
5 | 4 | adantr 274 | . . . . . . . . . 10 |
6 | 5 | eleq1d 2239 | . . . . . . . . 9 |
7 | 6 | biimprcd 159 | . . . . . . . 8 |
8 | 7 | rexlimiv 2581 | . . . . . . 7 |
9 | 3, 8 | sylbi 120 | . . . . . 6 |
10 | eleq1a 2242 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 11 | rexlimiv 2581 | . . . 4 |
13 | 12 | abssi 3222 | . . 3 |
14 | ssorduni 4469 | . . 3 | |
15 | 13, 14 | ax-mp 5 | . 2 |
16 | 1 | recsfval 6291 | . . . . 5 recs |
17 | 16 | dmeqi 4810 | . . . 4 recs |
18 | dmuni 4819 | . . . 4 | |
19 | vex 2733 | . . . . . 6 | |
20 | 19 | dmex 4875 | . . . . 5 |
21 | 20 | dfiun2 3905 | . . . 4 |
22 | 17, 18, 21 | 3eqtri 2195 | . . 3 recs |
23 | ordeq 4355 | . . 3 recs recs | |
24 | 22, 23 | ax-mp 5 | . 2 recs |
25 | 15, 24 | mpbir 145 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 wral 2448 wrex 2449 wss 3121 cuni 3794 ciun 3871 word 4345 con0 4346 cdm 4609 cres 4611 wfn 5191 cfv 5196 recscrecs 6280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-tr 4086 df-iord 4349 df-on 4351 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 df-recs 6281 |
This theorem is referenced by: tfrlemi14d 6309 tfri1dALT 6327 |
Copyright terms: Public domain | W3C validator |