| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem8 | Unicode version | ||
| Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| tfrlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 |
. . . . . . . . 9
| |
| 2 | 1 | tfrlem3 6399 |
. . . . . . . 8
|
| 3 | 2 | abeq2i 2316 |
. . . . . . 7
|
| 4 | fndm 5374 |
. . . . . . . . . . 11
| |
| 5 | 4 | adantr 276 |
. . . . . . . . . 10
|
| 6 | 5 | eleq1d 2274 |
. . . . . . . . 9
|
| 7 | 6 | biimprcd 160 |
. . . . . . . 8
|
| 8 | 7 | rexlimiv 2617 |
. . . . . . 7
|
| 9 | 3, 8 | sylbi 121 |
. . . . . 6
|
| 10 | eleq1a 2277 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | rexlimiv 2617 |
. . . 4
|
| 13 | 12 | abssi 3268 |
. . 3
|
| 14 | ssorduni 4536 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 1 | recsfval 6403 |
. . . . 5
|
| 17 | 16 | dmeqi 4880 |
. . . 4
|
| 18 | dmuni 4889 |
. . . 4
| |
| 19 | vex 2775 |
. . . . . 6
| |
| 20 | 19 | dmex 4946 |
. . . . 5
|
| 21 | 20 | dfiun2 3961 |
. . . 4
|
| 22 | 17, 18, 21 | 3eqtri 2230 |
. . 3
|
| 23 | ordeq 4420 |
. . 3
| |
| 24 | 22, 23 | ax-mp 5 |
. 2
|
| 25 | 15, 24 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4046 df-opab 4107 df-tr 4144 df-iord 4414 df-on 4416 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 df-recs 6393 |
| This theorem is referenced by: tfrlemi14d 6421 tfri1dALT 6439 |
| Copyright terms: Public domain | W3C validator |