ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 Unicode version

Theorem tfrlem8 6427
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem8  |-  Ord  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem8
Dummy variables  g  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 6420 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2318 . . . . . . 7  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fndm 5392 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
54adantr 276 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  =  z
)
65eleq1d 2276 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( dom  g  e.  On 
<->  z  e.  On ) )
76biimprcd 160 . . . . . . . 8  |-  ( z  e.  On  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) )  ->  dom  g  e.  On ) )
87rexlimiv 2619 . . . . . . 7  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  e.  On )
93, 8sylbi 121 . . . . . 6  |-  ( g  e.  A  ->  dom  g  e.  On )
10 eleq1a 2279 . . . . . 6  |-  ( dom  g  e.  On  ->  ( z  =  dom  g  ->  z  e.  On ) )
119, 10syl 14 . . . . 5  |-  ( g  e.  A  ->  (
z  =  dom  g  ->  z  e.  On ) )
1211rexlimiv 2619 . . . 4  |-  ( E. g  e.  A  z  =  dom  g  -> 
z  e.  On )
1312abssi 3276 . . 3  |-  { z  |  E. g  e.  A  z  =  dom  g }  C_  On
14 ssorduni 4553 . . 3  |-  ( { z  |  E. g  e.  A  z  =  dom  g }  C_  On  ->  Ord  U. { z  |  E. g  e.  A  z  =  dom  g } )
1513, 14ax-mp 5 . 2  |-  Ord  U. { z  |  E. g  e.  A  z  =  dom  g }
161recsfval 6424 . . . . 5  |- recs ( F )  =  U. A
1716dmeqi 4898 . . . 4  |-  dom recs ( F )  =  dom  U. A
18 dmuni 4907 . . . 4  |-  dom  U. A  =  U_ g  e.  A  dom  g
19 vex 2779 . . . . . 6  |-  g  e. 
_V
2019dmex 4964 . . . . 5  |-  dom  g  e.  _V
2120dfiun2 3975 . . . 4  |-  U_ g  e.  A  dom  g  = 
U. { z  |  E. g  e.  A  z  =  dom  g }
2217, 18, 213eqtri 2232 . . 3  |-  dom recs ( F )  =  U. { z  |  E. g  e.  A  z  =  dom  g }
23 ordeq 4437 . . 3  |-  ( dom recs
( F )  = 
U. { z  |  E. g  e.  A  z  =  dom  g }  ->  ( Ord  dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } ) )
2422, 23ax-mp 5 . 2  |-  ( Ord 
dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } )
2515, 24mpbir 146 1  |-  Ord  dom recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   E.wrex 2487    C_ wss 3174   U.cuni 3864   U_ciun 3941   Ord word 4427   Oncon0 4428   dom cdm 4693    |` cres 4695    Fn wfn 5285   ` cfv 5290  recscrecs 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-tr 4159  df-iord 4431  df-on 4433  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298  df-recs 6414
This theorem is referenced by:  tfrlemi14d  6442  tfri1dALT  6460
  Copyright terms: Public domain W3C validator