ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 Unicode version

Theorem tfrlem8 6223
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem8  |-  Ord  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem8
Dummy variables  g  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 6216 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2251 . . . . . . 7  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fndm 5230 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
54adantr 274 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  =  z
)
65eleq1d 2209 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( dom  g  e.  On 
<->  z  e.  On ) )
76biimprcd 159 . . . . . . . 8  |-  ( z  e.  On  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) )  ->  dom  g  e.  On ) )
87rexlimiv 2546 . . . . . . 7  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  e.  On )
93, 8sylbi 120 . . . . . 6  |-  ( g  e.  A  ->  dom  g  e.  On )
10 eleq1a 2212 . . . . . 6  |-  ( dom  g  e.  On  ->  ( z  =  dom  g  ->  z  e.  On ) )
119, 10syl 14 . . . . 5  |-  ( g  e.  A  ->  (
z  =  dom  g  ->  z  e.  On ) )
1211rexlimiv 2546 . . . 4  |-  ( E. g  e.  A  z  =  dom  g  -> 
z  e.  On )
1312abssi 3177 . . 3  |-  { z  |  E. g  e.  A  z  =  dom  g }  C_  On
14 ssorduni 4411 . . 3  |-  ( { z  |  E. g  e.  A  z  =  dom  g }  C_  On  ->  Ord  U. { z  |  E. g  e.  A  z  =  dom  g } )
1513, 14ax-mp 5 . 2  |-  Ord  U. { z  |  E. g  e.  A  z  =  dom  g }
161recsfval 6220 . . . . 5  |- recs ( F )  =  U. A
1716dmeqi 4748 . . . 4  |-  dom recs ( F )  =  dom  U. A
18 dmuni 4757 . . . 4  |-  dom  U. A  =  U_ g  e.  A  dom  g
19 vex 2692 . . . . . 6  |-  g  e. 
_V
2019dmex 4813 . . . . 5  |-  dom  g  e.  _V
2120dfiun2 3855 . . . 4  |-  U_ g  e.  A  dom  g  = 
U. { z  |  E. g  e.  A  z  =  dom  g }
2217, 18, 213eqtri 2165 . . 3  |-  dom recs ( F )  =  U. { z  |  E. g  e.  A  z  =  dom  g }
23 ordeq 4302 . . 3  |-  ( dom recs
( F )  = 
U. { z  |  E. g  e.  A  z  =  dom  g }  ->  ( Ord  dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } ) )
2422, 23ax-mp 5 . 2  |-  ( Ord 
dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } )
2515, 24mpbir 145 1  |-  Ord  dom recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 1481   {cab 2126   A.wral 2417   E.wrex 2418    C_ wss 3076   U.cuni 3744   U_ciun 3821   Ord word 4292   Oncon0 4293   dom cdm 4547    |` cres 4549    Fn wfn 5126   ` cfv 5131  recscrecs 6209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-tr 4035  df-iord 4296  df-on 4298  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fn 5134  df-fv 5139  df-recs 6210
This theorem is referenced by:  tfrlemi14d  6238  tfri1dALT  6256
  Copyright terms: Public domain W3C validator