ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 Unicode version

Theorem tfrlem8 6297
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem8  |-  Ord  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem8
Dummy variables  g  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 6290 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2281 . . . . . . 7  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fndm 5297 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
54adantr 274 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  =  z
)
65eleq1d 2239 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( dom  g  e.  On 
<->  z  e.  On ) )
76biimprcd 159 . . . . . . . 8  |-  ( z  e.  On  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) )  ->  dom  g  e.  On ) )
87rexlimiv 2581 . . . . . . 7  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  e.  On )
93, 8sylbi 120 . . . . . 6  |-  ( g  e.  A  ->  dom  g  e.  On )
10 eleq1a 2242 . . . . . 6  |-  ( dom  g  e.  On  ->  ( z  =  dom  g  ->  z  e.  On ) )
119, 10syl 14 . . . . 5  |-  ( g  e.  A  ->  (
z  =  dom  g  ->  z  e.  On ) )
1211rexlimiv 2581 . . . 4  |-  ( E. g  e.  A  z  =  dom  g  -> 
z  e.  On )
1312abssi 3222 . . 3  |-  { z  |  E. g  e.  A  z  =  dom  g }  C_  On
14 ssorduni 4471 . . 3  |-  ( { z  |  E. g  e.  A  z  =  dom  g }  C_  On  ->  Ord  U. { z  |  E. g  e.  A  z  =  dom  g } )
1513, 14ax-mp 5 . 2  |-  Ord  U. { z  |  E. g  e.  A  z  =  dom  g }
161recsfval 6294 . . . . 5  |- recs ( F )  =  U. A
1716dmeqi 4812 . . . 4  |-  dom recs ( F )  =  dom  U. A
18 dmuni 4821 . . . 4  |-  dom  U. A  =  U_ g  e.  A  dom  g
19 vex 2733 . . . . . 6  |-  g  e. 
_V
2019dmex 4877 . . . . 5  |-  dom  g  e.  _V
2120dfiun2 3907 . . . 4  |-  U_ g  e.  A  dom  g  = 
U. { z  |  E. g  e.  A  z  =  dom  g }
2217, 18, 213eqtri 2195 . . 3  |-  dom recs ( F )  =  U. { z  |  E. g  e.  A  z  =  dom  g }
23 ordeq 4357 . . 3  |-  ( dom recs
( F )  = 
U. { z  |  E. g  e.  A  z  =  dom  g }  ->  ( Ord  dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } ) )
2422, 23ax-mp 5 . 2  |-  ( Ord 
dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } )
2515, 24mpbir 145 1  |-  Ord  dom recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449    C_ wss 3121   U.cuni 3796   U_ciun 3873   Ord word 4347   Oncon0 4348   dom cdm 4611    |` cres 4613    Fn wfn 5193   ` cfv 5198  recscrecs 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-iun 3875  df-br 3990  df-opab 4051  df-tr 4088  df-iord 4351  df-on 4353  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-recs 6284
This theorem is referenced by:  tfrlemi14d  6312  tfri1dALT  6330
  Copyright terms: Public domain W3C validator