Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > tfrlem8 | Unicode version |
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
Ref | Expression |
---|---|
tfrlem.1 |
Ref | Expression |
---|---|
tfrlem8 | recs |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tfrlem.1 | . . . . . . . . 9 | |
2 | 1 | tfrlem3 6279 | . . . . . . . 8 |
3 | 2 | abeq2i 2277 | . . . . . . 7 |
4 | fndm 5287 | . . . . . . . . . . 11 | |
5 | 4 | adantr 274 | . . . . . . . . . 10 |
6 | 5 | eleq1d 2235 | . . . . . . . . 9 |
7 | 6 | biimprcd 159 | . . . . . . . 8 |
8 | 7 | rexlimiv 2577 | . . . . . . 7 |
9 | 3, 8 | sylbi 120 | . . . . . 6 |
10 | eleq1a 2238 | . . . . . 6 | |
11 | 9, 10 | syl 14 | . . . . 5 |
12 | 11 | rexlimiv 2577 | . . . 4 |
13 | 12 | abssi 3217 | . . 3 |
14 | ssorduni 4464 | . . 3 | |
15 | 13, 14 | ax-mp 5 | . 2 |
16 | 1 | recsfval 6283 | . . . . 5 recs |
17 | 16 | dmeqi 4805 | . . . 4 recs |
18 | dmuni 4814 | . . . 4 | |
19 | vex 2729 | . . . . . 6 | |
20 | 19 | dmex 4870 | . . . . 5 |
21 | 20 | dfiun2 3900 | . . . 4 |
22 | 17, 18, 21 | 3eqtri 2190 | . . 3 recs |
23 | ordeq 4350 | . . 3 recs recs | |
24 | 22, 23 | ax-mp 5 | . 2 recs |
25 | 15, 24 | mpbir 145 | 1 recs |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 wss 3116 cuni 3789 ciun 3866 word 4340 con0 4341 cdm 4604 cres 4606 wfn 5183 cfv 5188 recscrecs 6272 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-tr 4081 df-iord 4344 df-on 4346 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-fv 5196 df-recs 6273 |
This theorem is referenced by: tfrlemi14d 6301 tfri1dALT 6319 |
Copyright terms: Public domain | W3C validator |