| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tfrlem8 | Unicode version | ||
| Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.) |
| Ref | Expression |
|---|---|
| tfrlem.1 |
|
| Ref | Expression |
|---|---|
| tfrlem8 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tfrlem.1 |
. . . . . . . . 9
| |
| 2 | 1 | tfrlem3 6457 |
. . . . . . . 8
|
| 3 | 2 | abeq2i 2340 |
. . . . . . 7
|
| 4 | fndm 5420 |
. . . . . . . . . . 11
| |
| 5 | 4 | adantr 276 |
. . . . . . . . . 10
|
| 6 | 5 | eleq1d 2298 |
. . . . . . . . 9
|
| 7 | 6 | biimprcd 160 |
. . . . . . . 8
|
| 8 | 7 | rexlimiv 2642 |
. . . . . . 7
|
| 9 | 3, 8 | sylbi 121 |
. . . . . 6
|
| 10 | eleq1a 2301 |
. . . . . 6
| |
| 11 | 9, 10 | syl 14 |
. . . . 5
|
| 12 | 11 | rexlimiv 2642 |
. . . 4
|
| 13 | 12 | abssi 3299 |
. . 3
|
| 14 | ssorduni 4579 |
. . 3
| |
| 15 | 13, 14 | ax-mp 5 |
. 2
|
| 16 | 1 | recsfval 6461 |
. . . . 5
|
| 17 | 16 | dmeqi 4924 |
. . . 4
|
| 18 | dmuni 4933 |
. . . 4
| |
| 19 | vex 2802 |
. . . . . 6
| |
| 20 | 19 | dmex 4991 |
. . . . 5
|
| 21 | 20 | dfiun2 3999 |
. . . 4
|
| 22 | 17, 18, 21 | 3eqtri 2254 |
. . 3
|
| 23 | ordeq 4463 |
. . 3
| |
| 24 | 22, 23 | ax-mp 5 |
. 2
|
| 25 | 15, 24 | mpbir 146 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-tr 4183 df-iord 4457 df-on 4459 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 df-recs 6451 |
| This theorem is referenced by: tfrlemi14d 6479 tfri1dALT 6497 |
| Copyright terms: Public domain | W3C validator |