ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem8 Unicode version

Theorem tfrlem8 6321
Description: Lemma for transfinite recursion. The domain of recs is ordinal. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Alan Sare, 11-Mar-2008.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem8  |-  Ord  dom recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem8
Dummy variables  g  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . . . . . . . 9  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem3 6314 . . . . . . . 8  |-  A  =  { g  |  E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) ) }
32abeq2i 2288 . . . . . . 7  |-  ( g  e.  A  <->  E. z  e.  On  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
4 fndm 5317 . . . . . . . . . . 11  |-  ( g  Fn  z  ->  dom  g  =  z )
54adantr 276 . . . . . . . . . 10  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  =  z
)
65eleq1d 2246 . . . . . . . . 9  |-  ( ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  -> 
( dom  g  e.  On 
<->  z  e.  On ) )
76biimprcd 160 . . . . . . . 8  |-  ( z  e.  On  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( F `
 ( g  |`  w ) ) )  ->  dom  g  e.  On ) )
87rexlimiv 2588 . . . . . . 7  |-  ( E. z  e.  On  (
g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w
) ) )  ->  dom  g  e.  On )
93, 8sylbi 121 . . . . . 6  |-  ( g  e.  A  ->  dom  g  e.  On )
10 eleq1a 2249 . . . . . 6  |-  ( dom  g  e.  On  ->  ( z  =  dom  g  ->  z  e.  On ) )
119, 10syl 14 . . . . 5  |-  ( g  e.  A  ->  (
z  =  dom  g  ->  z  e.  On ) )
1211rexlimiv 2588 . . . 4  |-  ( E. g  e.  A  z  =  dom  g  -> 
z  e.  On )
1312abssi 3232 . . 3  |-  { z  |  E. g  e.  A  z  =  dom  g }  C_  On
14 ssorduni 4488 . . 3  |-  ( { z  |  E. g  e.  A  z  =  dom  g }  C_  On  ->  Ord  U. { z  |  E. g  e.  A  z  =  dom  g } )
1513, 14ax-mp 5 . 2  |-  Ord  U. { z  |  E. g  e.  A  z  =  dom  g }
161recsfval 6318 . . . . 5  |- recs ( F )  =  U. A
1716dmeqi 4830 . . . 4  |-  dom recs ( F )  =  dom  U. A
18 dmuni 4839 . . . 4  |-  dom  U. A  =  U_ g  e.  A  dom  g
19 vex 2742 . . . . . 6  |-  g  e. 
_V
2019dmex 4895 . . . . 5  |-  dom  g  e.  _V
2120dfiun2 3922 . . . 4  |-  U_ g  e.  A  dom  g  = 
U. { z  |  E. g  e.  A  z  =  dom  g }
2217, 18, 213eqtri 2202 . . 3  |-  dom recs ( F )  =  U. { z  |  E. g  e.  A  z  =  dom  g }
23 ordeq 4374 . . 3  |-  ( dom recs
( F )  = 
U. { z  |  E. g  e.  A  z  =  dom  g }  ->  ( Ord  dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } ) )
2422, 23ax-mp 5 . 2  |-  ( Ord 
dom recs ( F )  <->  Ord  U. {
z  |  E. g  e.  A  z  =  dom  g } )
2515, 24mpbir 146 1  |-  Ord  dom recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456    C_ wss 3131   U.cuni 3811   U_ciun 3888   Ord word 4364   Oncon0 4365   dom cdm 4628    |` cres 4630    Fn wfn 5213   ` cfv 5218  recscrecs 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-iun 3890  df-br 4006  df-opab 4067  df-tr 4104  df-iord 4368  df-on 4370  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-recs 6308
This theorem is referenced by:  tfrlemi14d  6336  tfri1dALT  6354
  Copyright terms: Public domain W3C validator