Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > reldisj | GIF version |
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
reldisj | ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3136 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | pm5.44 920 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)))) | |
3 | eldif 3130 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
4 | 3 | imbi2i 225 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) |
5 | 2, 4 | bitr4di 197 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
6 | 5 | sps 1530 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
7 | 1, 6 | sylbi 120 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
8 | 7 | albidv 1817 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵)))) |
9 | disj1 3465 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ ∀𝑥(𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵)) | |
10 | dfss2 3136 | . 2 ⊢ (𝐴 ⊆ (𝐶 ∖ 𝐵) ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ (𝐶 ∖ 𝐵))) | |
11 | 8, 9, 10 | 3bitr4g 222 | 1 ⊢ (𝐴 ⊆ 𝐶 → ((𝐴 ∩ 𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶 ∖ 𝐵))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∖ cdif 3118 ∩ cin 3120 ⊆ wss 3121 ∅c0 3414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-nul 3415 |
This theorem is referenced by: disj2 3470 ssdifsn 3711 structcnvcnv 12432 |
Copyright terms: Public domain | W3C validator |