ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reldisj GIF version

Theorem reldisj 3466
Description: Two ways of saying that two classes are disjoint, using the complement of 𝐵 relative to a universe 𝐶. (Contributed by NM, 15-Feb-2007.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
reldisj (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))

Proof of Theorem reldisj
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfss2 3136 . . . 4 (𝐴𝐶 ↔ ∀𝑥(𝑥𝐴𝑥𝐶))
2 pm5.44 920 . . . . . 6 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵))))
3 eldif 3130 . . . . . . 7 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
43imbi2i 225 . . . . . 6 ((𝑥𝐴𝑥 ∈ (𝐶𝐵)) ↔ (𝑥𝐴 → (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
52, 4bitr4di 197 . . . . 5 ((𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
65sps 1530 . . . 4 (∀𝑥(𝑥𝐴𝑥𝐶) → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
71, 6sylbi 120 . . 3 (𝐴𝐶 → ((𝑥𝐴 → ¬ 𝑥𝐵) ↔ (𝑥𝐴𝑥 ∈ (𝐶𝐵))))
87albidv 1817 . 2 (𝐴𝐶 → (∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵))))
9 disj1 3465 . 2 ((𝐴𝐵) = ∅ ↔ ∀𝑥(𝑥𝐴 → ¬ 𝑥𝐵))
10 dfss2 3136 . 2 (𝐴 ⊆ (𝐶𝐵) ↔ ∀𝑥(𝑥𝐴𝑥 ∈ (𝐶𝐵)))
118, 9, 103bitr4g 222 1 (𝐴𝐶 → ((𝐴𝐵) = ∅ ↔ 𝐴 ⊆ (𝐶𝐵)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wal 1346   = wceq 1348  wcel 2141  cdif 3118  cin 3120  wss 3121  c0 3414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-dif 3123  df-in 3127  df-ss 3134  df-nul 3415
This theorem is referenced by:  disj2  3470  ssdifsn  3711  structcnvcnv  12432
  Copyright terms: Public domain W3C validator