ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  relrn0 Unicode version

Theorem relrn0 4708
Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.)
Assertion
Ref Expression
relrn0  |-  ( Rel 
A  ->  ( A  =  (/)  <->  ran  A  =  (/) ) )

Proof of Theorem relrn0
StepHypRef Expression
1 reldm0 4667 . 2  |-  ( Rel 
A  ->  ( A  =  (/)  <->  dom  A  =  (/) ) )
2 dm0rn0 4666 . 2  |-  ( dom 
A  =  (/)  <->  ran  A  =  (/) )
31, 2syl6bb 195 1  |-  ( Rel 
A  ->  ( A  =  (/)  <->  ran  A  =  (/) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1290   (/)c0 3287   dom cdm 4451   ran crn 4452   Rel wrel 4456
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-v 2622  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-br 3852  df-opab 3906  df-xp 4457  df-rel 4458  df-cnv 4459  df-dm 4461  df-rn 4462
This theorem is referenced by:  cnvsn0  4912
  Copyright terms: Public domain W3C validator