| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > relrn0 | GIF version | ||
| Description: A relation is empty iff its range is empty. (Contributed by NM, 15-Sep-2004.) |
| Ref | Expression |
|---|---|
| relrn0 | ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldm0 4884 | . 2 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ dom 𝐴 = ∅)) | |
| 2 | dm0rn0 4883 | . 2 ⊢ (dom 𝐴 = ∅ ↔ ran 𝐴 = ∅) | |
| 3 | 1, 2 | bitrdi 196 | 1 ⊢ (Rel 𝐴 → (𝐴 = ∅ ↔ ran 𝐴 = ∅)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∅c0 3450 dom cdm 4663 ran crn 4664 Rel wrel 4668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-rel 4670 df-cnv 4671 df-dm 4673 df-rn 4674 |
| This theorem is referenced by: cnvsn0 5138 |
| Copyright terms: Public domain | W3C validator |