ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn0 Unicode version

Theorem cnvsn0 5072
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0  |-  `' { (/)
}  =  (/)

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 4796 . . 3  |-  dom  { (/)
}  =  ran  `' { (/) }
2 dmsn0 5071 . . 3  |-  dom  { (/)
}  =  (/)
31, 2eqtr3i 2188 . 2  |-  ran  `' { (/) }  =  (/)
4 relcnv 4982 . . 3  |-  Rel  `' { (/) }
5 relrn0 4866 . . 3  |-  ( Rel  `' { (/) }  ->  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) ) )
64, 5ax-mp 5 . 2  |-  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) )
73, 6mpbir 145 1  |-  `' { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343   (/)c0 3409   {csn 3576   `'ccnv 4603   dom cdm 4604   ran crn 4605   Rel wrel 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-cnv 4612  df-dm 4614  df-rn 4615
This theorem is referenced by:  brtpos0  6220  tpostpos  6232
  Copyright terms: Public domain W3C validator