ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn0 Unicode version

Theorem cnvsn0 5197
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0  |-  `' { (/)
}  =  (/)

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 4915 . . 3  |-  dom  { (/)
}  =  ran  `' { (/) }
2 dmsn0 5196 . . 3  |-  dom  { (/)
}  =  (/)
31, 2eqtr3i 2252 . 2  |-  ran  `' { (/) }  =  (/)
4 relcnv 5106 . . 3  |-  Rel  `' { (/) }
5 relrn0 4986 . . 3  |-  ( Rel  `' { (/) }  ->  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) ) )
64, 5ax-mp 5 . 2  |-  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) )
73, 6mpbir 146 1  |-  `' { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395   (/)c0 3491   {csn 3666   `'ccnv 4718   dom cdm 4719   ran crn 4720   Rel wrel 4724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-dm 4729  df-rn 4730
This theorem is referenced by:  brtpos0  6398  tpostpos  6410
  Copyright terms: Public domain W3C validator