ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnvsn0 Unicode version

Theorem cnvsn0 5138
Description: The converse of the singleton of the empty set is empty. (Contributed by Mario Carneiro, 30-Aug-2015.)
Assertion
Ref Expression
cnvsn0  |-  `' { (/)
}  =  (/)

Proof of Theorem cnvsn0
StepHypRef Expression
1 dfdm4 4858 . . 3  |-  dom  { (/)
}  =  ran  `' { (/) }
2 dmsn0 5137 . . 3  |-  dom  { (/)
}  =  (/)
31, 2eqtr3i 2219 . 2  |-  ran  `' { (/) }  =  (/)
4 relcnv 5047 . . 3  |-  Rel  `' { (/) }
5 relrn0 4928 . . 3  |-  ( Rel  `' { (/) }  ->  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) ) )
64, 5ax-mp 5 . 2  |-  ( `' { (/) }  =  (/)  <->  ran  `' { (/) }  =  (/) )
73, 6mpbir 146 1  |-  `' { (/)
}  =  (/)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   (/)c0 3450   {csn 3622   `'ccnv 4662   dom cdm 4663   ran crn 4664   Rel wrel 4668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-rel 4670  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  brtpos0  6310  tpostpos  6322
  Copyright terms: Public domain W3C validator