Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resundir | Unicode version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 3356 | . 2 | |
2 | df-res 4595 | . 2 | |
3 | df-res 4595 | . . 3 | |
4 | df-res 4595 | . . 3 | |
5 | 3, 4 | uneq12i 3259 | . 2 |
6 | 1, 2, 5 | 3eqtr4i 2188 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1335 cvv 2712 cun 3100 cin 3101 cxp 4581 cres 4585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-un 3106 df-in 3108 df-res 4595 |
This theorem is referenced by: imaundir 4996 fvunsng 5658 fvsnun1 5661 fvsnun2 5662 fsnunfv 5665 fsnunres 5666 fseq1p1m1 9978 setsresg 12188 setscom 12190 setsslid 12200 |
Copyright terms: Public domain | W3C validator |