ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resundir Unicode version

Theorem resundir 4877
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )

Proof of Theorem resundir
StepHypRef Expression
1 indir 3356 . 2  |-  ( ( A  u.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
2 df-res 4595 . 2  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  u.  B
)  i^i  ( C  X.  _V ) )
3 df-res 4595 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
4 df-res 4595 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
53, 4uneq12i 3259 . 2  |-  ( ( A  |`  C )  u.  ( B  |`  C ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
61, 2, 53eqtr4i 2188 1  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1335   _Vcvv 2712    u. cun 3100    i^i cin 3101    X. cxp 4581    |` cres 4585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-un 3106  df-in 3108  df-res 4595
This theorem is referenced by:  imaundir  4996  fvunsng  5658  fvsnun1  5661  fvsnun2  5662  fsnunfv  5665  fsnunres  5666  fseq1p1m1  9978  setsresg  12188  setscom  12190  setsslid  12200
  Copyright terms: Public domain W3C validator