ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resundir Unicode version

Theorem resundir 4956
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )

Proof of Theorem resundir
StepHypRef Expression
1 indir 3408 . 2  |-  ( ( A  u.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
2 df-res 4671 . 2  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  u.  B
)  i^i  ( C  X.  _V ) )
3 df-res 4671 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
4 df-res 4671 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
53, 4uneq12i 3311 . 2  |-  ( ( A  |`  C )  u.  ( B  |`  C ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
61, 2, 53eqtr4i 2224 1  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2760    u. cun 3151    i^i cin 3152    X. cxp 4657    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-res 4671
This theorem is referenced by:  imaundir  5079  fvunsng  5752  fvsnun1  5755  fvsnun2  5756  fsnunfv  5759  fsnunres  5760  fseq1p1m1  10160  setsresg  12656  setscom  12658  setsslid  12669
  Copyright terms: Public domain W3C validator