ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resundir Unicode version

Theorem resundir 4898
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )

Proof of Theorem resundir
StepHypRef Expression
1 indir 3371 . 2  |-  ( ( A  u.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
2 df-res 4616 . 2  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  u.  B
)  i^i  ( C  X.  _V ) )
3 df-res 4616 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
4 df-res 4616 . . 3  |-  ( B  |`  C )  =  ( B  i^i  ( C  X.  _V ) )
53, 4uneq12i 3274 . 2  |-  ( ( A  |`  C )  u.  ( B  |`  C ) )  =  ( ( A  i^i  ( C  X.  _V ) )  u.  ( B  i^i  ( C  X.  _V )
) )
61, 2, 53eqtr4i 2196 1  |-  ( ( A  u.  B )  |`  C )  =  ( ( A  |`  C )  u.  ( B  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1343   _Vcvv 2726    u. cun 3114    i^i cin 3115    X. cxp 4602    |` cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-res 4616
This theorem is referenced by:  imaundir  5017  fvunsng  5679  fvsnun1  5682  fvsnun2  5683  fsnunfv  5686  fsnunres  5687  fseq1p1m1  10029  setsresg  12432  setscom  12434  setsslid  12444
  Copyright terms: Public domain W3C validator