| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resundi | Unicode version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4720 |
. . . 4
| |
| 2 | 1 | ineq2i 3361 |
. . 3
|
| 3 | indi 3410 |
. . 3
| |
| 4 | 2, 3 | eqtri 2217 |
. 2
|
| 5 | df-res 4675 |
. 2
| |
| 6 | df-res 4675 |
. . 3
| |
| 7 | df-res 4675 |
. . 3
| |
| 8 | 6, 7 | uneq12i 3315 |
. 2
|
| 9 | 4, 5, 8 | 3eqtr4i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-opab 4095 df-xp 4669 df-res 4675 |
| This theorem is referenced by: imaundi 5082 relresfld 5199 relcoi1 5201 resasplitss 5437 fnsnsplitss 5761 fnsnsplitdc 6563 fnfi 7002 fseq1p1m1 10169 resunimafz0 10923 |
| Copyright terms: Public domain | W3C validator |