ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resundi Unicode version

Theorem resundi 4904
Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
resundi  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )

Proof of Theorem resundi
StepHypRef Expression
1 xpundir 4668 . . . 4  |-  ( ( B  u.  C )  X.  _V )  =  ( ( B  X.  _V )  u.  ( C  X.  _V ) )
21ineq2i 3325 . . 3  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( A  i^i  (
( B  X.  _V )  u.  ( C  X.  _V ) ) )
3 indi 3374 . . 3  |-  ( A  i^i  ( ( B  X.  _V )  u.  ( C  X.  _V ) ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
42, 3eqtri 2191 . 2  |-  ( A  i^i  ( ( B  u.  C )  X. 
_V ) )  =  ( ( A  i^i  ( B  X.  _V )
)  u.  ( A  i^i  ( C  X.  _V ) ) )
5 df-res 4623 . 2  |-  ( A  |`  ( B  u.  C
) )  =  ( A  i^i  ( ( B  u.  C )  X.  _V ) )
6 df-res 4623 . . 3  |-  ( A  |`  B )  =  ( A  i^i  ( B  X.  _V ) )
7 df-res 4623 . . 3  |-  ( A  |`  C )  =  ( A  i^i  ( C  X.  _V ) )
86, 7uneq12i 3279 . 2  |-  ( ( A  |`  B )  u.  ( A  |`  C ) )  =  ( ( A  i^i  ( B  X.  _V ) )  u.  ( A  i^i  ( C  X.  _V )
) )
94, 5, 83eqtr4i 2201 1  |-  ( A  |`  ( B  u.  C
) )  =  ( ( A  |`  B )  u.  ( A  |`  C ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1348   _Vcvv 2730    u. cun 3119    i^i cin 3120    X. cxp 4609    |` cres 4613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-opab 4051  df-xp 4617  df-res 4623
This theorem is referenced by:  imaundi  5023  relresfld  5140  relcoi1  5142  resasplitss  5377  fnsnsplitss  5695  fnsnsplitdc  6484  fnfi  6914  fseq1p1m1  10050  resunimafz0  10766
  Copyright terms: Public domain W3C validator