| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resundi | Unicode version | ||
| Description: Distributive law for restriction over union. Theorem 31 of [Suppes] p. 65. (Contributed by NM, 30-Sep-2002.) |
| Ref | Expression |
|---|---|
| resundi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpundir 4776 |
. . . 4
| |
| 2 | 1 | ineq2i 3402 |
. . 3
|
| 3 | indi 3451 |
. . 3
| |
| 4 | 2, 3 | eqtri 2250 |
. 2
|
| 5 | df-res 4731 |
. 2
| |
| 6 | df-res 4731 |
. . 3
| |
| 7 | df-res 4731 |
. . 3
| |
| 8 | 6, 7 | uneq12i 3356 |
. 2
|
| 9 | 4, 5, 8 | 3eqtr4i 2260 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-opab 4146 df-xp 4725 df-res 4731 |
| This theorem is referenced by: imaundi 5141 relresfld 5258 relcoi1 5260 resasplitss 5505 fnsnsplitss 5838 fnsnsplitdc 6651 fnfi 7103 fseq1p1m1 10290 resunimafz0 11053 |
| Copyright terms: Public domain | W3C validator |