| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resundir | GIF version | ||
| Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
| Ref | Expression |
|---|---|
| resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indir 3412 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
| 2 | df-res 4675 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
| 3 | df-res 4675 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
| 4 | df-res 4675 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 5 | 3, 4 | uneq12i 3315 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
| 6 | 1, 2, 5 | 3eqtr4i 2227 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 Vcvv 2763 ∪ cun 3155 ∩ cin 3156 × cxp 4661 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-res 4675 |
| This theorem is referenced by: imaundir 5083 fvunsng 5756 fvsnun1 5759 fvsnun2 5760 fsnunfv 5763 fsnunres 5764 fseq1p1m1 10169 setsresg 12716 setscom 12718 setsslid 12729 |
| Copyright terms: Public domain | W3C validator |