ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resundir GIF version

Theorem resundir 4898
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.)
Assertion
Ref Expression
resundir ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))

Proof of Theorem resundir
StepHypRef Expression
1 indir 3371 . 2 ((𝐴𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
2 df-res 4616 . 2 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐵) ∩ (𝐶 × V))
3 df-res 4616 . . 3 (𝐴𝐶) = (𝐴 ∩ (𝐶 × V))
4 df-res 4616 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
53, 4uneq12i 3274 . 2 ((𝐴𝐶) ∪ (𝐵𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V)))
61, 2, 53eqtr4i 2196 1 ((𝐴𝐵) ↾ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
Colors of variables: wff set class
Syntax hints:   = wceq 1343  Vcvv 2726  cun 3114  cin 3115   × cxp 4602  cres 4606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-res 4616
This theorem is referenced by:  imaundir  5017  fvunsng  5679  fvsnun1  5682  fvsnun2  5683  fsnunfv  5686  fsnunres  5687  fseq1p1m1  10029  setsresg  12432  setscom  12434  setsslid  12444
  Copyright terms: Public domain W3C validator