![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resundir | GIF version |
Description: Distributive law for restriction over union. (Contributed by NM, 23-Sep-2004.) |
Ref | Expression |
---|---|
resundir | ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indir 3385 | . 2 ⊢ ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) | |
2 | df-res 4639 | . 2 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ∪ 𝐵) ∩ (𝐶 × V)) | |
3 | df-res 4639 | . . 3 ⊢ (𝐴 ↾ 𝐶) = (𝐴 ∩ (𝐶 × V)) | |
4 | df-res 4639 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
5 | 3, 4 | uneq12i 3288 | . 2 ⊢ ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) = ((𝐴 ∩ (𝐶 × V)) ∪ (𝐵 ∩ (𝐶 × V))) |
6 | 1, 2, 5 | 3eqtr4i 2208 | 1 ⊢ ((𝐴 ∪ 𝐵) ↾ 𝐶) = ((𝐴 ↾ 𝐶) ∪ (𝐵 ↾ 𝐶)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 Vcvv 2738 ∪ cun 3128 ∩ cin 3129 × cxp 4625 ↾ cres 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2740 df-un 3134 df-in 3136 df-res 4639 |
This theorem is referenced by: imaundir 5043 fvunsng 5711 fvsnun1 5714 fvsnun2 5715 fsnunfv 5718 fsnunres 5719 fseq1p1m1 10094 setsresg 12500 setscom 12502 setsslid 12513 |
Copyright terms: Public domain | W3C validator |