ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres Unicode version

Theorem fsnunres 5721
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5327 . . . 4  |-  ( F  Fn  S  ->  ( F  |`  S )  =  F )
21adantr 276 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( F  |`  S )  =  F )
3 ressnop0 5700 . . . 4  |-  ( -.  X  e.  S  -> 
( { <. X ,  Y >. }  |`  S )  =  (/) )
43adantl 277 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( { <. X ,  Y >. }  |`  S )  =  (/) )
52, 4uneq12d 3292 . 2  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )  =  ( F  u.  (/) ) )
6 resundir 4923 . 2  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )
7 un0 3458 . . 3  |-  ( F  u.  (/) )  =  F
87eqcomi 2181 . 2  |-  F  =  ( F  u.  (/) )
95, 6, 83eqtr4g 2235 1  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597    |` cres 4630    Fn wfn 5213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-rel 4635  df-dm 4638  df-res 4640  df-fun 5220  df-fn 5221
This theorem is referenced by:  tfrlemisucaccv  6329  tfr1onlemsucaccv  6345  tfrcllemsucaccv  6358
  Copyright terms: Public domain W3C validator