ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres Unicode version

Theorem fsnunres 5687
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5297 . . . 4  |-  ( F  Fn  S  ->  ( F  |`  S )  =  F )
21adantr 274 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( F  |`  S )  =  F )
3 ressnop0 5666 . . . 4  |-  ( -.  X  e.  S  -> 
( { <. X ,  Y >. }  |`  S )  =  (/) )
43adantl 275 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( { <. X ,  Y >. }  |`  S )  =  (/) )
52, 4uneq12d 3277 . 2  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )  =  ( F  u.  (/) ) )
6 resundir 4898 . 2  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )
7 un0 3442 . . 3  |-  ( F  u.  (/) )  =  F
87eqcomi 2169 . 2  |-  F  =  ( F  u.  (/) )
95, 6, 83eqtr4g 2224 1  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136    u. cun 3114   (/)c0 3409   {csn 3576   <.cop 3579    |` cres 4606    Fn wfn 5183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-rel 4611  df-dm 4614  df-res 4616  df-fun 5190  df-fn 5191
This theorem is referenced by:  tfrlemisucaccv  6293  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322
  Copyright terms: Public domain W3C validator