ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fseq1p1m1 Unicode version

Theorem fseq1p1m1 10169
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.)
Hypothesis
Ref Expression
fseq1p1m1.1  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
Assertion
Ref Expression
fseq1p1m1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )

Proof of Theorem fseq1p1m1
StepHypRef Expression
1 simpr1 1005 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F : ( 1 ... N ) --> A )
2 nn0p1nn 9288 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantr 276 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( N  +  1 )  e.  NN )
4 simpr2 1006 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  B  e.  A )
5 fseq1p1m1.1 . . . . . . . . 9  |-  H  =  { <. ( N  + 
1 ) ,  B >. }
6 fsng 5735 . . . . . . . . 9  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H : {
( N  +  1 ) } --> { B } 
<->  H  =  { <. ( N  +  1 ) ,  B >. } ) )
75, 6mpbiri 168 . . . . . . . 8  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  H : { ( N  +  1 ) } --> { B }
)
83, 4, 7syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> { B } )
94snssd 3767 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  { B }  C_  A )
108, 9fssd 5420 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  H : { ( N  + 
1 ) } --> A )
11 fzp1disj 10155 . . . . . . 7  |-  ( ( 1 ... N )  i^i  { ( N  +  1 ) } )  =  (/)
1211a1i 9 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  i^i  { ( N  +  1 ) } )  =  (/) )
13 fun2 5431 . . . . . 6  |-  ( ( ( F : ( 1 ... N ) --> A  /\  H : { ( N  + 
1 ) } --> A )  /\  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )  =  (/) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
141, 10, 12, 13syl21anc 1248 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( ( 1 ... N )  u. 
{ ( N  + 
1 ) } ) --> A )
15 1z 9352 . . . . . . . 8  |-  1  e.  ZZ
16 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  NN0 )
17 nn0uz 9636 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
18 1m1e0 9059 . . . . . . . . . . 11  |-  ( 1  -  1 )  =  0
1918fveq2i 5561 . . . . . . . . . 10  |-  ( ZZ>= `  ( 1  -  1 ) )  =  (
ZZ>= `  0 )
2017, 19eqtr4i 2220 . . . . . . . . 9  |-  NN0  =  ( ZZ>= `  ( 1  -  1 ) )
2116, 20eleqtrdi 2289 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
22 fzsuc2 10154 . . . . . . . 8  |-  ( ( 1  e.  ZZ  /\  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )  -> 
( 1 ... ( N  +  1 ) )  =  ( ( 1 ... N )  u.  { ( N  +  1 ) } ) )
2315, 21, 22sylancr 414 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
2423eqcomd 2202 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( 1 ... N
)  u.  { ( N  +  1 ) } )  =  ( 1 ... ( N  +  1 ) ) )
2524feq2d 5395 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
) : ( ( 1 ... N )  u.  { ( N  +  1 ) } ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
2614, 25mpbid 147 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A )
27 simpr3 1007 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G  =  ( F  u.  H ) )
2827feq1d 5394 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  <->  ( F  u.  H ) : ( 1 ... ( N  +  1 ) ) --> A ) )
2926, 28mpbird 167 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
3027reseq1d 4945 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  ( ( F  u.  H )  |`  { ( N  + 
1 ) } ) )
31 ffn 5407 . . . . . . . . . 10  |-  ( F : ( 1 ... N ) --> A  ->  F  Fn  ( 1 ... N ) )
32 fnresdisj 5368 . . . . . . . . . 10  |-  ( F  Fn  ( 1 ... N )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
331, 31, 323syl 17 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( ( 1 ... N )  i^i  {
( N  +  1 ) } )  =  (/) 
<->  ( F  |`  { ( N  +  1 ) } )  =  (/) ) )
3412, 33mpbid 147 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  { ( N  +  1 ) } )  =  (/) )
3534uneq1d 3316 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  { ( N  +  1 ) } )  u.  ( H  |`  { ( N  +  1 ) } ) )  =  (
(/)  u.  ( H  |` 
{ ( N  + 
1 ) } ) ) )
36 resundir 4960 . . . . . . 7  |-  ( ( F  u.  H )  |`  { ( N  + 
1 ) } )  =  ( ( F  |`  { ( N  + 
1 ) } )  u.  ( H  |`  { ( N  + 
1 ) } ) )
37 uncom 3307 . . . . . . . 8  |-  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )  =  ( ( H  |`  { ( N  + 
1 ) } )  u.  (/) )
38 un0 3484 . . . . . . . 8  |-  ( ( H  |`  { ( N  +  1 ) } )  u.  (/) )  =  ( H  |`  { ( N  +  1 ) } )
3937, 38eqtr2i 2218 . . . . . . 7  |-  ( H  |`  { ( N  + 
1 ) } )  =  ( (/)  u.  ( H  |`  { ( N  +  1 ) } ) )
4035, 36, 393eqtr4g 2254 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  { ( N  +  1 ) } )  =  ( H  |`  { ( N  + 
1 ) } ) )
41 ffn 5407 . . . . . . 7  |-  ( H : { ( N  +  1 ) } --> A  ->  H  Fn  { ( N  +  1 ) } )
42 fnresdm 5367 . . . . . . 7  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( H  |`  { ( N  + 
1 ) } )  =  H )
4310, 41, 423syl 17 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  { ( N  +  1 ) } )  =  H )
4430, 40, 433eqtrd 2233 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  { ( N  +  1 ) } )  =  H )
4544fveq1d 5560 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( H `
 ( N  + 
1 ) ) )
4616nn0zd 9446 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  N  e.  ZZ )
4746peano2zd 9451 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( N  +  1 )  e.  ZZ )
48 snidg 3651 . . . . 5  |-  ( ( N  +  1 )  e.  ZZ  ->  ( N  +  1 )  e.  { ( N  +  1 ) } )
49 fvres 5582 . . . . 5  |-  ( ( N  +  1 )  e.  { ( N  +  1 ) }  ->  ( ( G  |`  { ( N  + 
1 ) } ) `
 ( N  + 
1 ) )  =  ( G `  ( N  +  1 ) ) )
5047, 48, 493syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( G  |`  { ( N  +  1 ) } ) `  ( N  +  1 ) )  =  ( G `
 ( N  + 
1 ) ) )
515fveq1i 5559 . . . . . 6  |-  ( H `
 ( N  + 
1 ) )  =  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )
52 fvsng 5758 . . . . . 6  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( { <. ( N  +  1 ) ,  B >. } `  ( N  +  1
) )  =  B )
5351, 52eqtrid 2241 . . . . 5  |-  ( ( ( N  +  1 )  e.  NN  /\  B  e.  A )  ->  ( H `  ( N  +  1 ) )  =  B )
543, 4, 53syl2anc 411 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H `  ( N  +  1 ) )  =  B )
5545, 50, 543eqtr3d 2237 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G `  ( N  +  1 ) )  =  B )
5627reseq1d 4945 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G  |`  ( 1 ... N ) )  =  ( ( F  u.  H )  |`  (
1 ... N ) ) )
57 incom 3355 . . . . . . . 8  |-  ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  ( ( 1 ... N )  i^i 
{ ( N  + 
1 ) } )
5857, 12eqtrid 2241 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( { ( N  + 
1 ) }  i^i  ( 1 ... N
) )  =  (/) )
59 ffn 5407 . . . . . . . 8  |-  ( H : { ( N  +  1 ) } --> { B }  ->  H  Fn  { ( N  +  1 ) } )
60 fnresdisj 5368 . . . . . . . 8  |-  ( H  Fn  { ( N  +  1 ) }  ->  ( ( { ( N  +  1 ) }  i^i  (
1 ... N ) )  =  (/)  <->  ( H  |`  ( 1 ... N
) )  =  (/) ) )
618, 59, 603syl 17 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( { ( N  +  1 ) }  i^i  ( 1 ... N ) )  =  (/) 
<->  ( H  |`  (
1 ... N ) )  =  (/) ) )
6258, 61mpbid 147 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( H  |`  ( 1 ... N ) )  =  (/) )
6362uneq2d 3317 . . . . 5  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )  =  ( ( F  |`  ( 1 ... N
) )  u.  (/) ) )
64 resundir 4960 . . . . 5  |-  ( ( F  u.  H )  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  ( H  |`  ( 1 ... N
) ) )
65 un0 3484 . . . . . 6  |-  ( ( F  |`  ( 1 ... N ) )  u.  (/) )  =  ( F  |`  ( 1 ... N ) )
6665eqcomi 2200 . . . . 5  |-  ( F  |`  ( 1 ... N
) )  =  ( ( F  |`  (
1 ... N ) )  u.  (/) )
6763, 64, 663eqtr4g 2254 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  (
( F  u.  H
)  |`  ( 1 ... N ) )  =  ( F  |`  (
1 ... N ) ) )
68 fnresdm 5367 . . . . 5  |-  ( F  Fn  ( 1 ... N )  ->  ( F  |`  ( 1 ... N ) )  =  F )
691, 31, 683syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( F  |`  ( 1 ... N ) )  =  F )
7056, 67, 693eqtrrd 2234 . . 3  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7129, 55, 703jca 1179 . 2  |-  ( ( N  e.  NN0  /\  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
) )  ->  ( G : ( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) )
72 simpr1 1005 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G : ( 1 ... ( N  +  1 ) ) --> A )
73 fzssp1 10142 . . . . 5  |-  ( 1 ... N )  C_  ( 1 ... ( N  +  1 ) )
74 fssres 5433 . . . . 5  |-  ( ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( 1 ... N )  C_  (
1 ... ( N  + 
1 ) ) )  ->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A )
7572, 73, 74sylancl 413 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... N ) ) : ( 1 ... N
) --> A )
76 simpr3 1007 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F  =  ( G  |`  ( 1 ... N
) ) )
7776feq1d 5394 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  <->  ( G  |`  ( 1 ... N
) ) : ( 1 ... N ) --> A ) )
7875, 77mpbird 167 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  F : ( 1 ... N ) --> A )
79 simpr2 1006 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  =  B )
802adantr 276 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  NN )
81 nnuz 9637 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
8280, 81eleqtrdi 2289 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( ZZ>= `  1
) )
83 eluzfz2 10107 . . . . . 6  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
8482, 83syl 14 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( N  +  1 )  e.  ( 1 ... ( N  +  1 ) ) )
8572, 84ffvelcdmd 5698 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G `  ( N  +  1 ) )  e.  A )
8679, 85eqeltrrd 2274 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  B  e.  A )
87 ffn 5407 . . . . . . . . 9  |-  ( G : ( 1 ... ( N  +  1 ) ) --> A  ->  G  Fn  ( 1 ... ( N  + 
1 ) ) )
8872, 87syl 14 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  Fn  ( 1 ... ( N  +  1 ) ) )
89 fnressn 5748 . . . . . . . 8  |-  ( ( G  Fn  ( 1 ... ( N  + 
1 ) )  /\  ( N  +  1
)  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( G  |`  { ( N  + 
1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
9088, 84, 89syl2anc 411 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. } )
91 opeq2 3809 . . . . . . . . 9  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >.  =  <. ( N  +  1 ) ,  B >. )
9291sneqd 3635 . . . . . . . 8  |-  ( ( G `  ( N  +  1 ) )  =  B  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9379, 92syl 14 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  { <. ( N  +  1 ) ,  ( G `  ( N  +  1
) ) >. }  =  { <. ( N  + 
1 ) ,  B >. } )
9490, 93eqtrd 2229 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  { ( N  +  1 ) } )  =  { <. ( N  +  1 ) ,  B >. } )
955, 94eqtr4id 2248 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  H  =  ( G  |`  { ( N  + 
1 ) } ) )
9676, 95uneq12d 3318 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F  u.  H )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) ) )
97 simpl 109 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  NN0 )
9897, 20eleqtrdi 2289 . . . . . . 7  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  N  e.  ( ZZ>= `  ( 1  -  1 ) ) )
9915, 98, 22sylancr 414 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
1 ... ( N  + 
1 ) )  =  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )
10099reseq2d 4946 . . . . 5  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  ( G  |`  (
( 1 ... N
)  u.  { ( N  +  1 ) } ) ) )
101 resundi 4959 . . . . 5  |-  ( G  |`  ( ( 1 ... N )  u.  {
( N  +  1 ) } ) )  =  ( ( G  |`  ( 1 ... N
) )  u.  ( G  |`  { ( N  +  1 ) } ) )
102100, 101eqtr2di 2246 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  (
( G  |`  (
1 ... N ) )  u.  ( G  |`  { ( N  + 
1 ) } ) )  =  ( G  |`  ( 1 ... ( N  +  1 ) ) ) )
103 fnresdm 5367 . . . . 5  |-  ( G  Fn  ( 1 ... ( N  +  1 ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10472, 87, 1033syl 17 . . . 4  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( G  |`  ( 1 ... ( N  +  1 ) ) )  =  G )
10596, 102, 1043eqtrrd 2234 . . 3  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  G  =  ( F  u.  H ) )
10678, 86, 1053jca 1179 . 2  |-  ( ( N  e.  NN0  /\  ( G : ( 1 ... ( N  + 
1 ) ) --> A  /\  ( G `  ( N  +  1
) )  =  B  /\  F  =  ( G  |`  ( 1 ... N ) ) ) )  ->  ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H ) ) )
10771, 106impbida 596 1  |-  ( N  e.  NN0  ->  ( ( F : ( 1 ... N ) --> A  /\  B  e.  A  /\  G  =  ( F  u.  H )
)  <->  ( G :
( 1 ... ( N  +  1 ) ) --> A  /\  ( G `  ( N  +  1 ) )  =  B  /\  F  =  ( G  |`  ( 1 ... N
) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   {csn 3622   <.cop 3625    |` cres 4665    Fn wfn 5253   -->wf 5254   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    - cmin 8197   NNcn 8990   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084
This theorem is referenced by:  fseq1m1p1  10170
  Copyright terms: Public domain W3C validator