Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fseq1p1m1 | Unicode version |
Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
Ref | Expression |
---|---|
fseq1p1m1.1 |
Ref | Expression |
---|---|
fseq1p1m1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr1 993 | . . . . . 6 | |
2 | nn0p1nn 9153 | . . . . . . . . 9 | |
3 | 2 | adantr 274 | . . . . . . . 8 |
4 | simpr2 994 | . . . . . . . 8 | |
5 | fseq1p1m1.1 | . . . . . . . . 9 | |
6 | fsng 5658 | . . . . . . . . 9 | |
7 | 5, 6 | mpbiri 167 | . . . . . . . 8 |
8 | 3, 4, 7 | syl2anc 409 | . . . . . . 7 |
9 | 4 | snssd 3718 | . . . . . . 7 |
10 | 8, 9 | fssd 5350 | . . . . . 6 |
11 | fzp1disj 10015 | . . . . . . 7 | |
12 | 11 | a1i 9 | . . . . . 6 |
13 | fun2 5361 | . . . . . 6 | |
14 | 1, 10, 12, 13 | syl21anc 1227 | . . . . 5 |
15 | 1z 9217 | . . . . . . . 8 | |
16 | simpl 108 | . . . . . . . . 9 | |
17 | nn0uz 9500 | . . . . . . . . . 10 | |
18 | 1m1e0 8926 | . . . . . . . . . . 11 | |
19 | 18 | fveq2i 5489 | . . . . . . . . . 10 |
20 | 17, 19 | eqtr4i 2189 | . . . . . . . . 9 |
21 | 16, 20 | eleqtrdi 2259 | . . . . . . . 8 |
22 | fzsuc2 10014 | . . . . . . . 8 | |
23 | 15, 21, 22 | sylancr 411 | . . . . . . 7 |
24 | 23 | eqcomd 2171 | . . . . . 6 |
25 | 24 | feq2d 5325 | . . . . 5 |
26 | 14, 25 | mpbid 146 | . . . 4 |
27 | simpr3 995 | . . . . 5 | |
28 | 27 | feq1d 5324 | . . . 4 |
29 | 26, 28 | mpbird 166 | . . 3 |
30 | 27 | reseq1d 4883 | . . . . . 6 |
31 | ffn 5337 | . . . . . . . . . 10 | |
32 | fnresdisj 5298 | . . . . . . . . . 10 | |
33 | 1, 31, 32 | 3syl 17 | . . . . . . . . 9 |
34 | 12, 33 | mpbid 146 | . . . . . . . 8 |
35 | 34 | uneq1d 3275 | . . . . . . 7 |
36 | resundir 4898 | . . . . . . 7 | |
37 | uncom 3266 | . . . . . . . 8 | |
38 | un0 3442 | . . . . . . . 8 | |
39 | 37, 38 | eqtr2i 2187 | . . . . . . 7 |
40 | 35, 36, 39 | 3eqtr4g 2224 | . . . . . 6 |
41 | ffn 5337 | . . . . . . 7 | |
42 | fnresdm 5297 | . . . . . . 7 | |
43 | 10, 41, 42 | 3syl 17 | . . . . . 6 |
44 | 30, 40, 43 | 3eqtrd 2202 | . . . . 5 |
45 | 44 | fveq1d 5488 | . . . 4 |
46 | 16 | nn0zd 9311 | . . . . . 6 |
47 | 46 | peano2zd 9316 | . . . . 5 |
48 | snidg 3605 | . . . . 5 | |
49 | fvres 5510 | . . . . 5 | |
50 | 47, 48, 49 | 3syl 17 | . . . 4 |
51 | 5 | fveq1i 5487 | . . . . . 6 |
52 | fvsng 5681 | . . . . . 6 | |
53 | 51, 52 | syl5eq 2211 | . . . . 5 |
54 | 3, 4, 53 | syl2anc 409 | . . . 4 |
55 | 45, 50, 54 | 3eqtr3d 2206 | . . 3 |
56 | 27 | reseq1d 4883 | . . . 4 |
57 | incom 3314 | . . . . . . . 8 | |
58 | 57, 12 | syl5eq 2211 | . . . . . . 7 |
59 | ffn 5337 | . . . . . . . 8 | |
60 | fnresdisj 5298 | . . . . . . . 8 | |
61 | 8, 59, 60 | 3syl 17 | . . . . . . 7 |
62 | 58, 61 | mpbid 146 | . . . . . 6 |
63 | 62 | uneq2d 3276 | . . . . 5 |
64 | resundir 4898 | . . . . 5 | |
65 | un0 3442 | . . . . . 6 | |
66 | 65 | eqcomi 2169 | . . . . 5 |
67 | 63, 64, 66 | 3eqtr4g 2224 | . . . 4 |
68 | fnresdm 5297 | . . . . 5 | |
69 | 1, 31, 68 | 3syl 17 | . . . 4 |
70 | 56, 67, 69 | 3eqtrrd 2203 | . . 3 |
71 | 29, 55, 70 | 3jca 1167 | . 2 |
72 | simpr1 993 | . . . . 5 | |
73 | fzssp1 10002 | . . . . 5 | |
74 | fssres 5363 | . . . . 5 | |
75 | 72, 73, 74 | sylancl 410 | . . . 4 |
76 | simpr3 995 | . . . . 5 | |
77 | 76 | feq1d 5324 | . . . 4 |
78 | 75, 77 | mpbird 166 | . . 3 |
79 | simpr2 994 | . . . 4 | |
80 | 2 | adantr 274 | . . . . . . 7 |
81 | nnuz 9501 | . . . . . . 7 | |
82 | 80, 81 | eleqtrdi 2259 | . . . . . 6 |
83 | eluzfz2 9967 | . . . . . 6 | |
84 | 82, 83 | syl 14 | . . . . 5 |
85 | 72, 84 | ffvelrnd 5621 | . . . 4 |
86 | 79, 85 | eqeltrrd 2244 | . . 3 |
87 | ffn 5337 | . . . . . . . . 9 | |
88 | 72, 87 | syl 14 | . . . . . . . 8 |
89 | fnressn 5671 | . . . . . . . 8 | |
90 | 88, 84, 89 | syl2anc 409 | . . . . . . 7 |
91 | opeq2 3759 | . . . . . . . . 9 | |
92 | 91 | sneqd 3589 | . . . . . . . 8 |
93 | 79, 92 | syl 14 | . . . . . . 7 |
94 | 90, 93 | eqtrd 2198 | . . . . . 6 |
95 | 5, 94 | eqtr4id 2218 | . . . . 5 |
96 | 76, 95 | uneq12d 3277 | . . . 4 |
97 | simpl 108 | . . . . . . . 8 | |
98 | 97, 20 | eleqtrdi 2259 | . . . . . . 7 |
99 | 15, 98, 22 | sylancr 411 | . . . . . 6 |
100 | 99 | reseq2d 4884 | . . . . 5 |
101 | resundi 4897 | . . . . 5 | |
102 | 100, 101 | eqtr2di 2216 | . . . 4 |
103 | fnresdm 5297 | . . . . 5 | |
104 | 72, 87, 103 | 3syl 17 | . . . 4 |
105 | 96, 102, 104 | 3eqtrrd 2203 | . . 3 |
106 | 78, 86, 105 | 3jca 1167 | . 2 |
107 | 71, 106 | impbida 586 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 cop 3579 cres 4606 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cc0 7753 c1 7754 caddc 7756 cmin 8069 cn 8857 cn0 9114 cz 9191 cuz 9466 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 |
This theorem is referenced by: fseq1m1p1 10030 |
Copyright terms: Public domain | W3C validator |