| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fseq1p1m1 | Unicode version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fseq1p1m1.1 |
|
| Ref | Expression |
|---|---|
| fseq1p1m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1005 |
. . . . . 6
| |
| 2 | nn0p1nn 9288 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 276 |
. . . . . . . 8
|
| 4 | simpr2 1006 |
. . . . . . . 8
| |
| 5 | fseq1p1m1.1 |
. . . . . . . . 9
| |
| 6 | fsng 5735 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . . 8
|
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | 4 | snssd 3767 |
. . . . . . 7
|
| 10 | 8, 9 | fssd 5420 |
. . . . . 6
|
| 11 | fzp1disj 10155 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | fun2 5431 |
. . . . . 6
| |
| 14 | 1, 10, 12, 13 | syl21anc 1248 |
. . . . 5
|
| 15 | 1z 9352 |
. . . . . . . 8
| |
| 16 | simpl 109 |
. . . . . . . . 9
| |
| 17 | nn0uz 9636 |
. . . . . . . . . 10
| |
| 18 | 1m1e0 9059 |
. . . . . . . . . . 11
| |
| 19 | 18 | fveq2i 5561 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2220 |
. . . . . . . . 9
|
| 21 | 16, 20 | eleqtrdi 2289 |
. . . . . . . 8
|
| 22 | fzsuc2 10154 |
. . . . . . . 8
| |
| 23 | 15, 21, 22 | sylancr 414 |
. . . . . . 7
|
| 24 | 23 | eqcomd 2202 |
. . . . . 6
|
| 25 | 24 | feq2d 5395 |
. . . . 5
|
| 26 | 14, 25 | mpbid 147 |
. . . 4
|
| 27 | simpr3 1007 |
. . . . 5
| |
| 28 | 27 | feq1d 5394 |
. . . 4
|
| 29 | 26, 28 | mpbird 167 |
. . 3
|
| 30 | 27 | reseq1d 4945 |
. . . . . 6
|
| 31 | ffn 5407 |
. . . . . . . . . 10
| |
| 32 | fnresdisj 5368 |
. . . . . . . . . 10
| |
| 33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
|
| 34 | 12, 33 | mpbid 147 |
. . . . . . . 8
|
| 35 | 34 | uneq1d 3316 |
. . . . . . 7
|
| 36 | resundir 4960 |
. . . . . . 7
| |
| 37 | uncom 3307 |
. . . . . . . 8
| |
| 38 | un0 3484 |
. . . . . . . 8
| |
| 39 | 37, 38 | eqtr2i 2218 |
. . . . . . 7
|
| 40 | 35, 36, 39 | 3eqtr4g 2254 |
. . . . . 6
|
| 41 | ffn 5407 |
. . . . . . 7
| |
| 42 | fnresdm 5367 |
. . . . . . 7
| |
| 43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 30, 40, 43 | 3eqtrd 2233 |
. . . . 5
|
| 45 | 44 | fveq1d 5560 |
. . . 4
|
| 46 | 16 | nn0zd 9446 |
. . . . . 6
|
| 47 | 46 | peano2zd 9451 |
. . . . 5
|
| 48 | snidg 3651 |
. . . . 5
| |
| 49 | fvres 5582 |
. . . . 5
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . 4
|
| 51 | 5 | fveq1i 5559 |
. . . . . 6
|
| 52 | fvsng 5758 |
. . . . . 6
| |
| 53 | 51, 52 | eqtrid 2241 |
. . . . 5
|
| 54 | 3, 4, 53 | syl2anc 411 |
. . . 4
|
| 55 | 45, 50, 54 | 3eqtr3d 2237 |
. . 3
|
| 56 | 27 | reseq1d 4945 |
. . . 4
|
| 57 | incom 3355 |
. . . . . . . 8
| |
| 58 | 57, 12 | eqtrid 2241 |
. . . . . . 7
|
| 59 | ffn 5407 |
. . . . . . . 8
| |
| 60 | fnresdisj 5368 |
. . . . . . . 8
| |
| 61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
|
| 62 | 58, 61 | mpbid 147 |
. . . . . 6
|
| 63 | 62 | uneq2d 3317 |
. . . . 5
|
| 64 | resundir 4960 |
. . . . 5
| |
| 65 | un0 3484 |
. . . . . 6
| |
| 66 | 65 | eqcomi 2200 |
. . . . 5
|
| 67 | 63, 64, 66 | 3eqtr4g 2254 |
. . . 4
|
| 68 | fnresdm 5367 |
. . . . 5
| |
| 69 | 1, 31, 68 | 3syl 17 |
. . . 4
|
| 70 | 56, 67, 69 | 3eqtrrd 2234 |
. . 3
|
| 71 | 29, 55, 70 | 3jca 1179 |
. 2
|
| 72 | simpr1 1005 |
. . . . 5
| |
| 73 | fzssp1 10142 |
. . . . 5
| |
| 74 | fssres 5433 |
. . . . 5
| |
| 75 | 72, 73, 74 | sylancl 413 |
. . . 4
|
| 76 | simpr3 1007 |
. . . . 5
| |
| 77 | 76 | feq1d 5394 |
. . . 4
|
| 78 | 75, 77 | mpbird 167 |
. . 3
|
| 79 | simpr2 1006 |
. . . 4
| |
| 80 | 2 | adantr 276 |
. . . . . . 7
|
| 81 | nnuz 9637 |
. . . . . . 7
| |
| 82 | 80, 81 | eleqtrdi 2289 |
. . . . . 6
|
| 83 | eluzfz2 10107 |
. . . . . 6
| |
| 84 | 82, 83 | syl 14 |
. . . . 5
|
| 85 | 72, 84 | ffvelcdmd 5698 |
. . . 4
|
| 86 | 79, 85 | eqeltrrd 2274 |
. . 3
|
| 87 | ffn 5407 |
. . . . . . . . 9
| |
| 88 | 72, 87 | syl 14 |
. . . . . . . 8
|
| 89 | fnressn 5748 |
. . . . . . . 8
| |
| 90 | 88, 84, 89 | syl2anc 411 |
. . . . . . 7
|
| 91 | opeq2 3809 |
. . . . . . . . 9
| |
| 92 | 91 | sneqd 3635 |
. . . . . . . 8
|
| 93 | 79, 92 | syl 14 |
. . . . . . 7
|
| 94 | 90, 93 | eqtrd 2229 |
. . . . . 6
|
| 95 | 5, 94 | eqtr4id 2248 |
. . . . 5
|
| 96 | 76, 95 | uneq12d 3318 |
. . . 4
|
| 97 | simpl 109 |
. . . . . . . 8
| |
| 98 | 97, 20 | eleqtrdi 2289 |
. . . . . . 7
|
| 99 | 15, 98, 22 | sylancr 414 |
. . . . . 6
|
| 100 | 99 | reseq2d 4946 |
. . . . 5
|
| 101 | resundi 4959 |
. . . . 5
| |
| 102 | 100, 101 | eqtr2di 2246 |
. . . 4
|
| 103 | fnresdm 5367 |
. . . . 5
| |
| 104 | 72, 87, 103 | 3syl 17 |
. . . 4
|
| 105 | 96, 102, 104 | 3eqtrrd 2234 |
. . 3
|
| 106 | 78, 86, 105 | 3jca 1179 |
. 2
|
| 107 | 71, 106 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 |
| This theorem is referenced by: fseq1m1p1 10170 |
| Copyright terms: Public domain | W3C validator |