| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fseq1p1m1 | Unicode version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fseq1p1m1.1 |
|
| Ref | Expression |
|---|---|
| fseq1p1m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1006 |
. . . . . 6
| |
| 2 | nn0p1nn 9334 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 276 |
. . . . . . . 8
|
| 4 | simpr2 1007 |
. . . . . . . 8
| |
| 5 | fseq1p1m1.1 |
. . . . . . . . 9
| |
| 6 | fsng 5753 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . . 8
|
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | 4 | snssd 3778 |
. . . . . . 7
|
| 10 | 8, 9 | fssd 5438 |
. . . . . 6
|
| 11 | fzp1disj 10202 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | fun2 5449 |
. . . . . 6
| |
| 14 | 1, 10, 12, 13 | syl21anc 1249 |
. . . . 5
|
| 15 | 1z 9398 |
. . . . . . . 8
| |
| 16 | simpl 109 |
. . . . . . . . 9
| |
| 17 | nn0uz 9683 |
. . . . . . . . . 10
| |
| 18 | 1m1e0 9105 |
. . . . . . . . . . 11
| |
| 19 | 18 | fveq2i 5579 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2229 |
. . . . . . . . 9
|
| 21 | 16, 20 | eleqtrdi 2298 |
. . . . . . . 8
|
| 22 | fzsuc2 10201 |
. . . . . . . 8
| |
| 23 | 15, 21, 22 | sylancr 414 |
. . . . . . 7
|
| 24 | 23 | eqcomd 2211 |
. . . . . 6
|
| 25 | 24 | feq2d 5413 |
. . . . 5
|
| 26 | 14, 25 | mpbid 147 |
. . . 4
|
| 27 | simpr3 1008 |
. . . . 5
| |
| 28 | 27 | feq1d 5412 |
. . . 4
|
| 29 | 26, 28 | mpbird 167 |
. . 3
|
| 30 | 27 | reseq1d 4958 |
. . . . . 6
|
| 31 | ffn 5425 |
. . . . . . . . . 10
| |
| 32 | fnresdisj 5386 |
. . . . . . . . . 10
| |
| 33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
|
| 34 | 12, 33 | mpbid 147 |
. . . . . . . 8
|
| 35 | 34 | uneq1d 3326 |
. . . . . . 7
|
| 36 | resundir 4973 |
. . . . . . 7
| |
| 37 | uncom 3317 |
. . . . . . . 8
| |
| 38 | un0 3494 |
. . . . . . . 8
| |
| 39 | 37, 38 | eqtr2i 2227 |
. . . . . . 7
|
| 40 | 35, 36, 39 | 3eqtr4g 2263 |
. . . . . 6
|
| 41 | ffn 5425 |
. . . . . . 7
| |
| 42 | fnresdm 5385 |
. . . . . . 7
| |
| 43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 30, 40, 43 | 3eqtrd 2242 |
. . . . 5
|
| 45 | 44 | fveq1d 5578 |
. . . 4
|
| 46 | 16 | nn0zd 9493 |
. . . . . 6
|
| 47 | 46 | peano2zd 9498 |
. . . . 5
|
| 48 | snidg 3662 |
. . . . 5
| |
| 49 | fvres 5600 |
. . . . 5
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . 4
|
| 51 | 5 | fveq1i 5577 |
. . . . . 6
|
| 52 | fvsng 5780 |
. . . . . 6
| |
| 53 | 51, 52 | eqtrid 2250 |
. . . . 5
|
| 54 | 3, 4, 53 | syl2anc 411 |
. . . 4
|
| 55 | 45, 50, 54 | 3eqtr3d 2246 |
. . 3
|
| 56 | 27 | reseq1d 4958 |
. . . 4
|
| 57 | incom 3365 |
. . . . . . . 8
| |
| 58 | 57, 12 | eqtrid 2250 |
. . . . . . 7
|
| 59 | ffn 5425 |
. . . . . . . 8
| |
| 60 | fnresdisj 5386 |
. . . . . . . 8
| |
| 61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
|
| 62 | 58, 61 | mpbid 147 |
. . . . . 6
|
| 63 | 62 | uneq2d 3327 |
. . . . 5
|
| 64 | resundir 4973 |
. . . . 5
| |
| 65 | un0 3494 |
. . . . . 6
| |
| 66 | 65 | eqcomi 2209 |
. . . . 5
|
| 67 | 63, 64, 66 | 3eqtr4g 2263 |
. . . 4
|
| 68 | fnresdm 5385 |
. . . . 5
| |
| 69 | 1, 31, 68 | 3syl 17 |
. . . 4
|
| 70 | 56, 67, 69 | 3eqtrrd 2243 |
. . 3
|
| 71 | 29, 55, 70 | 3jca 1180 |
. 2
|
| 72 | simpr1 1006 |
. . . . 5
| |
| 73 | fzssp1 10189 |
. . . . 5
| |
| 74 | fssres 5451 |
. . . . 5
| |
| 75 | 72, 73, 74 | sylancl 413 |
. . . 4
|
| 76 | simpr3 1008 |
. . . . 5
| |
| 77 | 76 | feq1d 5412 |
. . . 4
|
| 78 | 75, 77 | mpbird 167 |
. . 3
|
| 79 | simpr2 1007 |
. . . 4
| |
| 80 | 2 | adantr 276 |
. . . . . . 7
|
| 81 | nnuz 9684 |
. . . . . . 7
| |
| 82 | 80, 81 | eleqtrdi 2298 |
. . . . . 6
|
| 83 | eluzfz2 10154 |
. . . . . 6
| |
| 84 | 82, 83 | syl 14 |
. . . . 5
|
| 85 | 72, 84 | ffvelcdmd 5716 |
. . . 4
|
| 86 | 79, 85 | eqeltrrd 2283 |
. . 3
|
| 87 | ffn 5425 |
. . . . . . . . 9
| |
| 88 | 72, 87 | syl 14 |
. . . . . . . 8
|
| 89 | fnressn 5770 |
. . . . . . . 8
| |
| 90 | 88, 84, 89 | syl2anc 411 |
. . . . . . 7
|
| 91 | opeq2 3820 |
. . . . . . . . 9
| |
| 92 | 91 | sneqd 3646 |
. . . . . . . 8
|
| 93 | 79, 92 | syl 14 |
. . . . . . 7
|
| 94 | 90, 93 | eqtrd 2238 |
. . . . . 6
|
| 95 | 5, 94 | eqtr4id 2257 |
. . . . 5
|
| 96 | 76, 95 | uneq12d 3328 |
. . . 4
|
| 97 | simpl 109 |
. . . . . . . 8
| |
| 98 | 97, 20 | eleqtrdi 2298 |
. . . . . . 7
|
| 99 | 15, 98, 22 | sylancr 414 |
. . . . . 6
|
| 100 | 99 | reseq2d 4959 |
. . . . 5
|
| 101 | resundi 4972 |
. . . . 5
| |
| 102 | 100, 101 | eqtr2di 2255 |
. . . 4
|
| 103 | fnresdm 5385 |
. . . . 5
| |
| 104 | 72, 87, 103 | 3syl 17 |
. . . 4
|
| 105 | 96, 102, 104 | 3eqtrrd 2243 |
. . 3
|
| 106 | 78, 86, 105 | 3jca 1180 |
. 2
|
| 107 | 71, 106 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 |
| This theorem is referenced by: fseq1m1p1 10217 |
| Copyright terms: Public domain | W3C validator |