| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fseq1p1m1 | Unicode version | ||
| Description: Add/remove an item to/from the end of a finite sequence. (Contributed by Paul Chapman, 17-Nov-2012.) (Revised by Mario Carneiro, 7-Mar-2014.) |
| Ref | Expression |
|---|---|
| fseq1p1m1.1 |
|
| Ref | Expression |
|---|---|
| fseq1p1m1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr1 1027 |
. . . . . 6
| |
| 2 | nn0p1nn 9408 |
. . . . . . . . 9
| |
| 3 | 2 | adantr 276 |
. . . . . . . 8
|
| 4 | simpr2 1028 |
. . . . . . . 8
| |
| 5 | fseq1p1m1.1 |
. . . . . . . . 9
| |
| 6 | fsng 5808 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpbiri 168 |
. . . . . . . 8
|
| 8 | 3, 4, 7 | syl2anc 411 |
. . . . . . 7
|
| 9 | 4 | snssd 3813 |
. . . . . . 7
|
| 10 | 8, 9 | fssd 5486 |
. . . . . 6
|
| 11 | fzp1disj 10276 |
. . . . . . 7
| |
| 12 | 11 | a1i 9 |
. . . . . 6
|
| 13 | fun2 5498 |
. . . . . 6
| |
| 14 | 1, 10, 12, 13 | syl21anc 1270 |
. . . . 5
|
| 15 | 1z 9472 |
. . . . . . . 8
| |
| 16 | simpl 109 |
. . . . . . . . 9
| |
| 17 | nn0uz 9757 |
. . . . . . . . . 10
| |
| 18 | 1m1e0 9179 |
. . . . . . . . . . 11
| |
| 19 | 18 | fveq2i 5630 |
. . . . . . . . . 10
|
| 20 | 17, 19 | eqtr4i 2253 |
. . . . . . . . 9
|
| 21 | 16, 20 | eleqtrdi 2322 |
. . . . . . . 8
|
| 22 | fzsuc2 10275 |
. . . . . . . 8
| |
| 23 | 15, 21, 22 | sylancr 414 |
. . . . . . 7
|
| 24 | 23 | eqcomd 2235 |
. . . . . 6
|
| 25 | 24 | feq2d 5461 |
. . . . 5
|
| 26 | 14, 25 | mpbid 147 |
. . . 4
|
| 27 | simpr3 1029 |
. . . . 5
| |
| 28 | 27 | feq1d 5460 |
. . . 4
|
| 29 | 26, 28 | mpbird 167 |
. . 3
|
| 30 | 27 | reseq1d 5004 |
. . . . . 6
|
| 31 | ffn 5473 |
. . . . . . . . . 10
| |
| 32 | fnresdisj 5433 |
. . . . . . . . . 10
| |
| 33 | 1, 31, 32 | 3syl 17 |
. . . . . . . . 9
|
| 34 | 12, 33 | mpbid 147 |
. . . . . . . 8
|
| 35 | 34 | uneq1d 3357 |
. . . . . . 7
|
| 36 | resundir 5019 |
. . . . . . 7
| |
| 37 | uncom 3348 |
. . . . . . . 8
| |
| 38 | un0 3525 |
. . . . . . . 8
| |
| 39 | 37, 38 | eqtr2i 2251 |
. . . . . . 7
|
| 40 | 35, 36, 39 | 3eqtr4g 2287 |
. . . . . 6
|
| 41 | ffn 5473 |
. . . . . . 7
| |
| 42 | fnresdm 5432 |
. . . . . . 7
| |
| 43 | 10, 41, 42 | 3syl 17 |
. . . . . 6
|
| 44 | 30, 40, 43 | 3eqtrd 2266 |
. . . . 5
|
| 45 | 44 | fveq1d 5629 |
. . . 4
|
| 46 | 16 | nn0zd 9567 |
. . . . . 6
|
| 47 | 46 | peano2zd 9572 |
. . . . 5
|
| 48 | snidg 3695 |
. . . . 5
| |
| 49 | fvres 5651 |
. . . . 5
| |
| 50 | 47, 48, 49 | 3syl 17 |
. . . 4
|
| 51 | 5 | fveq1i 5628 |
. . . . . 6
|
| 52 | fvsng 5835 |
. . . . . 6
| |
| 53 | 51, 52 | eqtrid 2274 |
. . . . 5
|
| 54 | 3, 4, 53 | syl2anc 411 |
. . . 4
|
| 55 | 45, 50, 54 | 3eqtr3d 2270 |
. . 3
|
| 56 | 27 | reseq1d 5004 |
. . . 4
|
| 57 | incom 3396 |
. . . . . . . 8
| |
| 58 | 57, 12 | eqtrid 2274 |
. . . . . . 7
|
| 59 | ffn 5473 |
. . . . . . . 8
| |
| 60 | fnresdisj 5433 |
. . . . . . . 8
| |
| 61 | 8, 59, 60 | 3syl 17 |
. . . . . . 7
|
| 62 | 58, 61 | mpbid 147 |
. . . . . 6
|
| 63 | 62 | uneq2d 3358 |
. . . . 5
|
| 64 | resundir 5019 |
. . . . 5
| |
| 65 | un0 3525 |
. . . . . 6
| |
| 66 | 65 | eqcomi 2233 |
. . . . 5
|
| 67 | 63, 64, 66 | 3eqtr4g 2287 |
. . . 4
|
| 68 | fnresdm 5432 |
. . . . 5
| |
| 69 | 1, 31, 68 | 3syl 17 |
. . . 4
|
| 70 | 56, 67, 69 | 3eqtrrd 2267 |
. . 3
|
| 71 | 29, 55, 70 | 3jca 1201 |
. 2
|
| 72 | simpr1 1027 |
. . . . 5
| |
| 73 | fzssp1 10263 |
. . . . 5
| |
| 74 | fssres 5501 |
. . . . 5
| |
| 75 | 72, 73, 74 | sylancl 413 |
. . . 4
|
| 76 | simpr3 1029 |
. . . . 5
| |
| 77 | 76 | feq1d 5460 |
. . . 4
|
| 78 | 75, 77 | mpbird 167 |
. . 3
|
| 79 | simpr2 1028 |
. . . 4
| |
| 80 | 2 | adantr 276 |
. . . . . . 7
|
| 81 | nnuz 9758 |
. . . . . . 7
| |
| 82 | 80, 81 | eleqtrdi 2322 |
. . . . . 6
|
| 83 | eluzfz2 10228 |
. . . . . 6
| |
| 84 | 82, 83 | syl 14 |
. . . . 5
|
| 85 | 72, 84 | ffvelcdmd 5771 |
. . . 4
|
| 86 | 79, 85 | eqeltrrd 2307 |
. . 3
|
| 87 | ffn 5473 |
. . . . . . . . 9
| |
| 88 | 72, 87 | syl 14 |
. . . . . . . 8
|
| 89 | fnressn 5825 |
. . . . . . . 8
| |
| 90 | 88, 84, 89 | syl2anc 411 |
. . . . . . 7
|
| 91 | opeq2 3858 |
. . . . . . . . 9
| |
| 92 | 91 | sneqd 3679 |
. . . . . . . 8
|
| 93 | 79, 92 | syl 14 |
. . . . . . 7
|
| 94 | 90, 93 | eqtrd 2262 |
. . . . . 6
|
| 95 | 5, 94 | eqtr4id 2281 |
. . . . 5
|
| 96 | 76, 95 | uneq12d 3359 |
. . . 4
|
| 97 | simpl 109 |
. . . . . . . 8
| |
| 98 | 97, 20 | eleqtrdi 2322 |
. . . . . . 7
|
| 99 | 15, 98, 22 | sylancr 414 |
. . . . . 6
|
| 100 | 99 | reseq2d 5005 |
. . . . 5
|
| 101 | resundi 5018 |
. . . . 5
| |
| 102 | 100, 101 | eqtr2di 2279 |
. . . 4
|
| 103 | fnresdm 5432 |
. . . . 5
| |
| 104 | 72, 87, 103 | 3syl 17 |
. . . 4
|
| 105 | 96, 102, 104 | 3eqtrrd 2267 |
. . 3
|
| 106 | 78, 86, 105 | 3jca 1201 |
. 2
|
| 107 | 71, 106 | impbida 598 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-n0 9370 df-z 9447 df-uz 9723 df-fz 10205 |
| This theorem is referenced by: fseq1m1p1 10291 |
| Copyright terms: Public domain | W3C validator |