ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvsnun1 Unicode version

Theorem fvsnun1 5508
Description: The value of a function with one of its ordered pairs replaced, at the replaced ordered pair. See also fvsnun2 5509. (Contributed by NM, 23-Sep-2007.)
Hypotheses
Ref Expression
fvsnun.1  |-  A  e. 
_V
fvsnun.2  |-  B  e. 
_V
fvsnun.3  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
Assertion
Ref Expression
fvsnun1  |-  ( G `
 A )  =  B

Proof of Theorem fvsnun1
StepHypRef Expression
1 fvsnun.3 . . . . 5  |-  G  =  ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )
21reseq1i 4722 . . . 4  |-  ( G  |`  { A } )  =  ( ( {
<. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )
3 resundir 4740 . . . . 5  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( ( {
<. A ,  B >. }  |`  { A } )  u.  ( ( F  |`  ( C  \  { A } ) )  |`  { A } ) )
4 incom 3193 . . . . . . . . 9  |-  ( ( C  \  { A } )  i^i  { A } )  =  ( { A }  i^i  ( C  \  { A } ) )
5 disjdif 3359 . . . . . . . . 9  |-  ( { A }  i^i  ( C  \  { A }
) )  =  (/)
64, 5eqtri 2109 . . . . . . . 8  |-  ( ( C  \  { A } )  i^i  { A } )  =  (/)
7 resdisj 4872 . . . . . . . 8  |-  ( ( ( C  \  { A } )  i^i  { A } )  =  (/)  ->  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/) )
86, 7ax-mp 7 . . . . . . 7  |-  ( ( F  |`  ( C  \  { A } ) )  |`  { A } )  =  (/)
98uneq2i 3152 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )
10 un0 3320 . . . . . 6  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (/) )  =  ( { <. A ,  B >. }  |`  { A } )
119, 10eqtri 2109 . . . . 5  |-  ( ( { <. A ,  B >. }  |`  { A } )  u.  (
( F  |`  ( C  \  { A }
) )  |`  { A } ) )  =  ( { <. A ,  B >. }  |`  { A } )
123, 11eqtri 2109 . . . 4  |-  ( ( { <. A ,  B >. }  u.  ( F  |`  ( C  \  { A } ) ) )  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
132, 12eqtri 2109 . . 3  |-  ( G  |`  { A } )  =  ( { <. A ,  B >. }  |`  { A } )
1413fveq1i 5319 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)
15 fvsnun.1 . . . 4  |-  A  e. 
_V
1615snid 3479 . . 3  |-  A  e. 
{ A }
17 fvres 5342 . . 3  |-  ( A  e.  { A }  ->  ( ( G  |`  { A } ) `  A )  =  ( G `  A ) )
1816, 17ax-mp 7 . 2  |-  ( ( G  |`  { A } ) `  A
)  =  ( G `
 A )
19 fvres 5342 . . . 4  |-  ( A  e.  { A }  ->  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A ) )
2016, 19ax-mp 7 . . 3  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  ( {
<. A ,  B >. } `
 A )
21 fvsnun.2 . . . 4  |-  B  e. 
_V
2215, 21fvsn 5506 . . 3  |-  ( {
<. A ,  B >. } `
 A )  =  B
2320, 22eqtri 2109 . 2  |-  ( ( { <. A ,  B >. }  |`  { A } ) `  A
)  =  B
2414, 18, 233eqtr3i 2117 1  |-  ( G `
 A )  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1290    e. wcel 1439   _Vcvv 2620    \ cdif 2997    u. cun 2998    i^i cin 2999   (/)c0 3287   {csn 3450   <.cop 3453    |` cres 4454   ` cfv 5028
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-res 4464  df-iota 4993  df-fun 5030  df-fv 5036
This theorem is referenced by:  fac0  10197
  Copyright terms: Public domain W3C validator