| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsnunfv | Unicode version | ||
| Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
| Ref | Expression |
|---|---|
| fsnunfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 5026 |
. . . . . . . . 9
| |
| 2 | incom 3396 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eqtri 2250 |
. . . . . . . 8
|
| 4 | disjsn 3728 |
. . . . . . . . 9
| |
| 5 | 4 | biimpri 133 |
. . . . . . . 8
|
| 6 | 3, 5 | eqtrid 2274 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant3 1044 |
. . . . . 6
|
| 8 | relres 5033 |
. . . . . . 7
| |
| 9 | reldm0 4941 |
. . . . . . 7
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . 6
|
| 11 | 7, 10 | sylibr 134 |
. . . . 5
|
| 12 | fnsng 5368 |
. . . . . . 7
| |
| 13 | 12 | 3adant3 1041 |
. . . . . 6
|
| 14 | fnresdm 5432 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 11, 15 | uneq12d 3359 |
. . . 4
|
| 17 | resundir 5019 |
. . . 4
| |
| 18 | uncom 3348 |
. . . . 5
| |
| 19 | un0 3525 |
. . . . 5
| |
| 20 | 18, 19 | eqtr2i 2251 |
. . . 4
|
| 21 | 16, 17, 20 | 3eqtr4g 2287 |
. . 3
|
| 22 | 21 | fveq1d 5629 |
. 2
|
| 23 | snidg 3695 |
. . . 4
| |
| 24 | 23 | 3ad2ant1 1042 |
. . 3
|
| 25 | fvres 5651 |
. . 3
| |
| 26 | 24, 25 | syl 14 |
. 2
|
| 27 | fvsng 5835 |
. . 3
| |
| 28 | 27 | 3adant3 1041 |
. 2
|
| 29 | 22, 26, 28 | 3eqtr3d 2270 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-res 4731 df-iota 5278 df-fun 5320 df-fn 5321 df-fv 5326 |
| This theorem is referenced by: tfrlemisucaccv 6471 tfr1onlemsucaccv 6487 tfrcllemsucaccv 6500 inftonninf 10664 hashinfom 11000 zfz1isolemiso 11061 cats1un 11253 fvsetsid 13066 |
| Copyright terms: Public domain | W3C validator |