| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsnunfv | Unicode version | ||
| Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
| Ref | Expression |
|---|---|
| fsnunfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4981 |
. . . . . . . . 9
| |
| 2 | incom 3365 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eqtri 2226 |
. . . . . . . 8
|
| 4 | disjsn 3695 |
. . . . . . . . 9
| |
| 5 | 4 | biimpri 133 |
. . . . . . . 8
|
| 6 | 3, 5 | eqtrid 2250 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant3 1023 |
. . . . . 6
|
| 8 | relres 4988 |
. . . . . . 7
| |
| 9 | reldm0 4897 |
. . . . . . 7
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . 6
|
| 11 | 7, 10 | sylibr 134 |
. . . . 5
|
| 12 | fnsng 5322 |
. . . . . . 7
| |
| 13 | 12 | 3adant3 1020 |
. . . . . 6
|
| 14 | fnresdm 5386 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 11, 15 | uneq12d 3328 |
. . . 4
|
| 17 | resundir 4974 |
. . . 4
| |
| 18 | uncom 3317 |
. . . . 5
| |
| 19 | un0 3494 |
. . . . 5
| |
| 20 | 18, 19 | eqtr2i 2227 |
. . . 4
|
| 21 | 16, 17, 20 | 3eqtr4g 2263 |
. . 3
|
| 22 | 21 | fveq1d 5580 |
. 2
|
| 23 | snidg 3662 |
. . . 4
| |
| 24 | 23 | 3ad2ant1 1021 |
. . 3
|
| 25 | fvres 5602 |
. . 3
| |
| 26 | 24, 25 | syl 14 |
. 2
|
| 27 | fvsng 5782 |
. . 3
| |
| 28 | 27 | 3adant3 1020 |
. 2
|
| 29 | 22, 26, 28 | 3eqtr3d 2246 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-res 4688 df-iota 5233 df-fun 5274 df-fn 5275 df-fv 5280 |
| This theorem is referenced by: tfrlemisucaccv 6413 tfr1onlemsucaccv 6429 tfrcllemsucaccv 6442 inftonninf 10589 hashinfom 10925 zfz1isolemiso 10986 fvsetsid 12899 |
| Copyright terms: Public domain | W3C validator |