ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunfv Unicode version

Theorem fsnunfv 5763
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.)
Assertion
Ref Expression
fsnunfv  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )

Proof of Theorem fsnunfv
StepHypRef Expression
1 dmres 4967 . . . . . . . . 9  |-  dom  ( F  |`  { X }
)  =  ( { X }  i^i  dom  F )
2 incom 3355 . . . . . . . . 9  |-  ( { X }  i^i  dom  F )  =  ( dom 
F  i^i  { X } )
31, 2eqtri 2217 . . . . . . . 8  |-  dom  ( F  |`  { X }
)  =  ( dom 
F  i^i  { X } )
4 disjsn 3684 . . . . . . . . 9  |-  ( ( dom  F  i^i  { X } )  =  (/)  <->  -.  X  e.  dom  F )
54biimpri 133 . . . . . . . 8  |-  ( -.  X  e.  dom  F  ->  ( dom  F  i^i  { X } )  =  (/) )
63, 5eqtrid 2241 . . . . . . 7  |-  ( -.  X  e.  dom  F  ->  dom  ( F  |`  { X } )  =  (/) )
763ad2ant3 1022 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  dom  ( F  |`  { X } )  =  (/) )
8 relres 4974 . . . . . . 7  |-  Rel  ( F  |`  { X }
)
9 reldm0 4884 . . . . . . 7  |-  ( Rel  ( F  |`  { X } )  ->  (
( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) ) )
108, 9ax-mp 5 . . . . . 6  |-  ( ( F  |`  { X } )  =  (/)  <->  dom  ( F  |`  { X } )  =  (/) )
117, 10sylibr 134 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( F  |` 
{ X } )  =  (/) )
12 fnsng 5305 . . . . . . 7  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  { <. X ,  Y >. }  Fn  { X } )
13123adant3 1019 . . . . . 6  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  { <. X ,  Y >. }  Fn  { X } )
14 fnresdm 5367 . . . . . 6  |-  ( {
<. X ,  Y >. }  Fn  { X }  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1513, 14syl 14 . . . . 5  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. }  |`  { X } )  =  { <. X ,  Y >. } )
1611, 15uneq12d 3318 . . . 4  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  |`  { X }
)  u.  ( {
<. X ,  Y >. }  |`  { X } ) )  =  ( (/)  u. 
{ <. X ,  Y >. } ) )
17 resundir 4960 . . . 4  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  ( ( F  |`  { X } )  u.  ( { <. X ,  Y >. }  |`  { X } ) )
18 uncom 3307 . . . . 5  |-  ( (/)  u. 
{ <. X ,  Y >. } )  =  ( { <. X ,  Y >. }  u.  (/) )
19 un0 3484 . . . . 5  |-  ( {
<. X ,  Y >. }  u.  (/) )  =  { <. X ,  Y >. }
2018, 19eqtr2i 2218 . . . 4  |-  { <. X ,  Y >. }  =  ( (/)  u.  { <. X ,  Y >. } )
2116, 17, 203eqtr4g 2254 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  { X } )  =  { <. X ,  Y >. } )
2221fveq1d 5560 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( {
<. X ,  Y >. } `
 X ) )
23 snidg 3651 . . . 4  |-  ( X  e.  V  ->  X  e.  { X } )
24233ad2ant1 1020 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  X  e.  { X } )
25 fvres 5582 . . 3  |-  ( X  e.  { X }  ->  ( ( ( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X )  =  ( ( F  u.  { <. X ,  Y >. } ) `  X ) )
2624, 25syl 14 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( (
( F  u.  { <. X ,  Y >. } )  |`  { X } ) `  X
)  =  ( ( F  u.  { <. X ,  Y >. } ) `
 X ) )
27 fvsng 5758 . . 3  |-  ( ( X  e.  V  /\  Y  e.  W )  ->  ( { <. X ,  Y >. } `  X
)  =  Y )
28273adant3 1019 . 2  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( { <. X ,  Y >. } `
 X )  =  Y )
2922, 26, 283eqtr3d 2237 1  |-  ( ( X  e.  V  /\  Y  e.  W  /\  -.  X  e.  dom  F )  ->  ( ( F  u.  { <. X ,  Y >. } ) `  X )  =  Y )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167    u. cun 3155    i^i cin 3156   (/)c0 3450   {csn 3622   <.cop 3625   dom cdm 4663    |` cres 4665   Rel wrel 4668    Fn wfn 5253   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266
This theorem is referenced by:  tfrlemisucaccv  6383  tfr1onlemsucaccv  6399  tfrcllemsucaccv  6412  inftonninf  10534  hashinfom  10870  zfz1isolemiso  10931  fvsetsid  12712
  Copyright terms: Public domain W3C validator