| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsnunfv | Unicode version | ||
| Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
| Ref | Expression |
|---|---|
| fsnunfv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmres 4999 |
. . . . . . . . 9
| |
| 2 | incom 3373 |
. . . . . . . . 9
| |
| 3 | 1, 2 | eqtri 2228 |
. . . . . . . 8
|
| 4 | disjsn 3705 |
. . . . . . . . 9
| |
| 5 | 4 | biimpri 133 |
. . . . . . . 8
|
| 6 | 3, 5 | eqtrid 2252 |
. . . . . . 7
|
| 7 | 6 | 3ad2ant3 1023 |
. . . . . 6
|
| 8 | relres 5006 |
. . . . . . 7
| |
| 9 | reldm0 4915 |
. . . . . . 7
| |
| 10 | 8, 9 | ax-mp 5 |
. . . . . 6
|
| 11 | 7, 10 | sylibr 134 |
. . . . 5
|
| 12 | fnsng 5340 |
. . . . . . 7
| |
| 13 | 12 | 3adant3 1020 |
. . . . . 6
|
| 14 | fnresdm 5404 |
. . . . . 6
| |
| 15 | 13, 14 | syl 14 |
. . . . 5
|
| 16 | 11, 15 | uneq12d 3336 |
. . . 4
|
| 17 | resundir 4992 |
. . . 4
| |
| 18 | uncom 3325 |
. . . . 5
| |
| 19 | un0 3502 |
. . . . 5
| |
| 20 | 18, 19 | eqtr2i 2229 |
. . . 4
|
| 21 | 16, 17, 20 | 3eqtr4g 2265 |
. . 3
|
| 22 | 21 | fveq1d 5601 |
. 2
|
| 23 | snidg 3672 |
. . . 4
| |
| 24 | 23 | 3ad2ant1 1021 |
. . 3
|
| 25 | fvres 5623 |
. . 3
| |
| 26 | 24, 25 | syl 14 |
. 2
|
| 27 | fvsng 5803 |
. . 3
| |
| 28 | 27 | 3adant3 1020 |
. 2
|
| 29 | 22, 26, 28 | 3eqtr3d 2248 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 |
| This theorem is referenced by: tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 inftonninf 10624 hashinfom 10960 zfz1isolemiso 11021 cats1un 11212 fvsetsid 12981 |
| Copyright terms: Public domain | W3C validator |