Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fsnunfv | Unicode version |
Description: Recover the added point from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.) (Revised by NM, 18-May-2017.) |
Ref | Expression |
---|---|
fsnunfv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 4910 | . . . . . . . . 9 | |
2 | incom 3319 | . . . . . . . . 9 | |
3 | 1, 2 | eqtri 2191 | . . . . . . . 8 |
4 | disjsn 3643 | . . . . . . . . 9 | |
5 | 4 | biimpri 132 | . . . . . . . 8 |
6 | 3, 5 | eqtrid 2215 | . . . . . . 7 |
7 | 6 | 3ad2ant3 1015 | . . . . . 6 |
8 | relres 4917 | . . . . . . 7 | |
9 | reldm0 4827 | . . . . . . 7 | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 |
11 | 7, 10 | sylibr 133 | . . . . 5 |
12 | fnsng 5243 | . . . . . . 7 | |
13 | 12 | 3adant3 1012 | . . . . . 6 |
14 | fnresdm 5305 | . . . . . 6 | |
15 | 13, 14 | syl 14 | . . . . 5 |
16 | 11, 15 | uneq12d 3282 | . . . 4 |
17 | resundir 4903 | . . . 4 | |
18 | uncom 3271 | . . . . 5 | |
19 | un0 3447 | . . . . 5 | |
20 | 18, 19 | eqtr2i 2192 | . . . 4 |
21 | 16, 17, 20 | 3eqtr4g 2228 | . . 3 |
22 | 21 | fveq1d 5496 | . 2 |
23 | snidg 3610 | . . . 4 | |
24 | 23 | 3ad2ant1 1013 | . . 3 |
25 | fvres 5518 | . . 3 | |
26 | 24, 25 | syl 14 | . 2 |
27 | fvsng 5690 | . . 3 | |
28 | 27 | 3adant3 1012 | . 2 |
29 | 22, 26, 28 | 3eqtr3d 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wb 104 w3a 973 wceq 1348 wcel 2141 cun 3119 cin 3120 c0 3414 csn 3581 cop 3584 cdm 4609 cres 4611 wrel 4614 wfn 5191 cfv 5196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-res 4621 df-iota 5158 df-fun 5198 df-fn 5199 df-fv 5204 |
This theorem is referenced by: tfrlemisucaccv 6302 tfr1onlemsucaccv 6318 tfrcllemsucaccv 6331 inftonninf 10386 hashinfom 10701 zfz1isolemiso 10763 fvsetsid 12439 |
Copyright terms: Public domain | W3C validator |