| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reu8nf | GIF version | ||
| Description: Restricted uniqueness using implicit substitution. This version of reu8 2976 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.) |
| Ref | Expression |
|---|---|
| reu8nf.1 | ⊢ Ⅎ𝑥𝜓 |
| reu8nf.2 | ⊢ Ⅎ𝑥𝜒 |
| reu8nf.3 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) |
| reu8nf.4 | ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| reu8nf | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤𝜑 | |
| 2 | reu8nf.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 3 | reu8nf.3 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜒)) | |
| 4 | 1, 2, 3 | cbvreuw 2737 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑤 ∈ 𝐴 𝜒) |
| 5 | reu8nf.4 | . . 3 ⊢ (𝑤 = 𝑦 → (𝜒 ↔ 𝜓)) | |
| 6 | 5 | reu8 2976 | . 2 ⊢ (∃!𝑤 ∈ 𝐴 𝜒 ↔ ∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦))) |
| 7 | nfcv 2350 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 8 | reu8nf.1 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 9 | nfv 1552 | . . . . . 6 ⊢ Ⅎ𝑥 𝑤 = 𝑦 | |
| 10 | 8, 9 | nfim 1596 | . . . . 5 ⊢ Ⅎ𝑥(𝜓 → 𝑤 = 𝑦) |
| 11 | 7, 10 | nfralw 2545 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) |
| 12 | 2, 11 | nfan 1589 | . . 3 ⊢ Ⅎ𝑥(𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) |
| 13 | nfv 1552 | . . 3 ⊢ Ⅎ𝑤(𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)) | |
| 14 | 3 | bicomd 141 | . . . . 5 ⊢ (𝑥 = 𝑤 → (𝜒 ↔ 𝜑)) |
| 15 | 14 | equcoms 1732 | . . . 4 ⊢ (𝑤 = 𝑥 → (𝜒 ↔ 𝜑)) |
| 16 | equequ1 1736 | . . . . . 6 ⊢ (𝑤 = 𝑥 → (𝑤 = 𝑦 ↔ 𝑥 = 𝑦)) | |
| 17 | 16 | imbi2d 230 | . . . . 5 ⊢ (𝑤 = 𝑥 → ((𝜓 → 𝑤 = 𝑦) ↔ (𝜓 → 𝑥 = 𝑦))) |
| 18 | 17 | ralbidv 2508 | . . . 4 ⊢ (𝑤 = 𝑥 → (∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 19 | 15, 18 | anbi12d 473 | . . 3 ⊢ (𝑤 = 𝑥 → ((𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦)))) |
| 20 | 12, 13, 19 | cbvrexw 2736 | . 2 ⊢ (∃𝑤 ∈ 𝐴 (𝜒 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑤 = 𝑦)) ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| 21 | 4, 6, 20 | 3bitri 206 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 (𝜓 → 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 Ⅎwnf 1484 ∀wral 2486 ∃wrex 2487 ∃!wreu 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-v 2778 |
| This theorem is referenced by: reuccatpfxs1 11238 |
| Copyright terms: Public domain | W3C validator |