ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reu8nf GIF version

Theorem reu8nf 3087
Description: Restricted uniqueness using implicit substitution. This version of reu8 2976 uses a nonfreeness hypothesis for 𝑥 and 𝜓 instead of distinct variable conditions. (Contributed by AV, 21-Jan-2022.)
Hypotheses
Ref Expression
reu8nf.1 𝑥𝜓
reu8nf.2 𝑥𝜒
reu8nf.3 (𝑥 = 𝑤 → (𝜑𝜒))
reu8nf.4 (𝑤 = 𝑦 → (𝜒𝜓))
Assertion
Ref Expression
reu8nf (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Distinct variable groups:   𝑥,𝑤,𝑦,𝐴   𝜑,𝑤   𝜓,𝑤   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑤)

Proof of Theorem reu8nf
StepHypRef Expression
1 nfv 1552 . . 3 𝑤𝜑
2 reu8nf.2 . . 3 𝑥𝜒
3 reu8nf.3 . . 3 (𝑥 = 𝑤 → (𝜑𝜒))
41, 2, 3cbvreuw 2737 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑤𝐴 𝜒)
5 reu8nf.4 . . 3 (𝑤 = 𝑦 → (𝜒𝜓))
65reu8 2976 . 2 (∃!𝑤𝐴 𝜒 ↔ ∃𝑤𝐴 (𝜒 ∧ ∀𝑦𝐴 (𝜓𝑤 = 𝑦)))
7 nfcv 2350 . . . . 5 𝑥𝐴
8 reu8nf.1 . . . . . 6 𝑥𝜓
9 nfv 1552 . . . . . 6 𝑥 𝑤 = 𝑦
108, 9nfim 1596 . . . . 5 𝑥(𝜓𝑤 = 𝑦)
117, 10nfralw 2545 . . . 4 𝑥𝑦𝐴 (𝜓𝑤 = 𝑦)
122, 11nfan 1589 . . 3 𝑥(𝜒 ∧ ∀𝑦𝐴 (𝜓𝑤 = 𝑦))
13 nfv 1552 . . 3 𝑤(𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))
143bicomd 141 . . . . 5 (𝑥 = 𝑤 → (𝜒𝜑))
1514equcoms 1732 . . . 4 (𝑤 = 𝑥 → (𝜒𝜑))
16 equequ1 1736 . . . . . 6 (𝑤 = 𝑥 → (𝑤 = 𝑦𝑥 = 𝑦))
1716imbi2d 230 . . . . 5 (𝑤 = 𝑥 → ((𝜓𝑤 = 𝑦) ↔ (𝜓𝑥 = 𝑦)))
1817ralbidv 2508 . . . 4 (𝑤 = 𝑥 → (∀𝑦𝐴 (𝜓𝑤 = 𝑦) ↔ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
1915, 18anbi12d 473 . . 3 (𝑤 = 𝑥 → ((𝜒 ∧ ∀𝑦𝐴 (𝜓𝑤 = 𝑦)) ↔ (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦))))
2012, 13, 19cbvrexw 2736 . 2 (∃𝑤𝐴 (𝜒 ∧ ∀𝑦𝐴 (𝜓𝑤 = 𝑦)) ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
214, 6, 203bitri 206 1 (∃!𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 (𝜑 ∧ ∀𝑦𝐴 (𝜓𝑥 = 𝑦)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wnf 1484  wral 2486  wrex 2487  ∃!wreu 2488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-v 2778
This theorem is referenced by:  reuccatpfxs1  11238
  Copyright terms: Public domain W3C validator