| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexeqbidv | Unicode version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.) |
| Ref | Expression |
|---|---|
| raleqbidv.1 |
|
| raleqbidv.2 |
|
| Ref | Expression |
|---|---|
| rexeqbidv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidv.1 |
. . 3
| |
| 2 | 1 | rexeqdv 2735 |
. 2
|
| 3 | raleqbidv.2 |
. . 3
| |
| 4 | 3 | rexbidv 2531 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 |
| This theorem is referenced by: supeq123d 7158 gsumfzval 13424 gsumval2 13430 ismnddef 13451 mndpropd 13473 mnd1 13488 isgrp 13539 isgrpd2e 13553 grp1 13639 issrgid 13944 isringid 13988 dvdsrvald 14057 rspsn 14498 mplvalcoe 14654 |
| Copyright terms: Public domain | W3C validator |