ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbidv Unicode version

Theorem rexeqbidv 2719
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1  |-  ( ph  ->  A  =  B )
raleqbidv.2  |-  ( ph  ->  ( ps  <->  ch )
)
Assertion
Ref Expression
rexeqbidv  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Distinct variable groups:    x, A    x, B    ph, x
Allowed substitution hints:    ps( x)    ch( x)

Proof of Theorem rexeqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3  |-  ( ph  ->  A  =  B )
21rexeqdv 2709 . 2  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ps )
)
3 raleqbidv.2 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
43rexbidv 2507 . 2  |-  ( ph  ->  ( E. x  e.  B  ps  <->  E. x  e.  B  ch )
)
52, 4bitrd 188 1  |-  ( ph  ->  ( E. x  e.  A  ps  <->  E. x  e.  B  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490
This theorem is referenced by:  supeq123d  7093  gsumfzval  13223  gsumval2  13229  ismnddef  13250  mndpropd  13272  mnd1  13287  isgrp  13338  isgrpd2e  13352  grp1  13438  issrgid  13743  isringid  13787  reldvdsrsrg  13854  dvdsrvald  13855  rspsn  14296  mplvalcoe  14452
  Copyright terms: Public domain W3C validator