Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > grp1 | Unicode version |
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
grp1.m |
Ref | Expression |
---|---|
grp1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grp1.m | . . 3 | |
2 | 1 | mnd1 12701 | . 2 |
3 | df-ov 5860 | . . . . 5 | |
4 | opexg 4214 | . . . . . . 7 | |
5 | 4 | anidms 395 | . . . . . 6 |
6 | fvsng 5696 | . . . . . 6 | |
7 | 5, 6 | mpancom 420 | . . . . 5 |
8 | 3, 7 | eqtrid 2216 | . . . 4 |
9 | 1 | mnd1id 12702 | . . . 4 |
10 | 8, 9 | eqtr4d 2207 | . . 3 |
11 | oveq2 5865 | . . . . . . 7 | |
12 | 11 | eqeq1d 2180 | . . . . . 6 |
13 | 12 | rexbidv 2472 | . . . . 5 |
14 | 13 | ralsng 3624 | . . . 4 |
15 | oveq1 5864 | . . . . . 6 | |
16 | 15 | eqeq1d 2180 | . . . . 5 |
17 | 16 | rexsng 3625 | . . . 4 |
18 | 14, 17 | bitrd 187 | . . 3 |
19 | 10, 18 | mpbird 166 | . 2 |
20 | eqid 2171 | . . . 4 | |
21 | eqid 2171 | . . . 4 | |
22 | eqid 2171 | . . . 4 | |
23 | 20, 21, 22 | isgrp 12736 | . . 3 |
24 | snexg 4171 | . . . . . 6 | |
25 | opexg 4214 | . . . . . . . 8 | |
26 | 5, 25 | mpancom 420 | . . . . . . 7 |
27 | snexg 4171 | . . . . . . 7 | |
28 | 26, 27 | syl 14 | . . . . . 6 |
29 | 1 | grpbaseg 12530 | . . . . . 6 |
30 | 24, 28, 29 | syl2anc 409 | . . . . 5 |
31 | 1 | grpplusgg 12531 | . . . . . . . . 9 |
32 | 24, 28, 31 | syl2anc 409 | . . . . . . . 8 |
33 | 32 | oveqd 5874 | . . . . . . 7 |
34 | 33 | eqeq1d 2180 | . . . . . 6 |
35 | 30, 34 | rexeqbidv 2679 | . . . . 5 |
36 | 30, 35 | raleqbidv 2678 | . . . 4 |
37 | 36 | anbi2d 462 | . . 3 |
38 | 23, 37 | bitr4id 198 | . 2 |
39 | 2, 19, 38 | mpbir2and 940 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1349 wcel 2142 wral 2449 wrex 2450 cvv 2731 csn 3584 cpr 3585 cop 3587 cfv 5200 (class class class)co 5857 cnx 12417 cbs 12420 cplusg 12484 c0g 12618 cmnd 12674 cgrp 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 610 ax-in2 611 ax-io 705 ax-5 1441 ax-7 1442 ax-gen 1443 ax-ie1 1487 ax-ie2 1488 ax-8 1498 ax-10 1499 ax-11 1500 ax-i12 1501 ax-bndl 1503 ax-4 1504 ax-17 1520 ax-i9 1524 ax-ial 1528 ax-i5r 1529 ax-13 2144 ax-14 2145 ax-ext 2153 ax-sep 4108 ax-pow 4161 ax-pr 4195 ax-un 4419 ax-setind 4522 ax-cnex 7869 ax-resscn 7870 ax-1cn 7871 ax-1re 7872 ax-icn 7873 ax-addcl 7874 ax-addrcl 7875 ax-mulcl 7876 ax-addcom 7878 ax-addass 7880 ax-i2m1 7883 ax-0lt1 7884 ax-0id 7886 ax-rnegex 7887 ax-pre-ltirr 7890 ax-pre-ltadd 7894 |
This theorem depends on definitions: df-bi 116 df-3an 976 df-tru 1352 df-fal 1355 df-nf 1455 df-sb 1757 df-eu 2023 df-mo 2024 df-clab 2158 df-cleq 2164 df-clel 2167 df-nfc 2302 df-ne 2342 df-nel 2437 df-ral 2454 df-rex 2455 df-reu 2456 df-rmo 2457 df-rab 2458 df-v 2733 df-sbc 2957 df-csb 3051 df-dif 3124 df-un 3126 df-in 3128 df-ss 3135 df-nul 3416 df-pw 3569 df-sn 3590 df-pr 3591 df-op 3593 df-uni 3798 df-int 3833 df-br 3991 df-opab 4052 df-mpt 4053 df-id 4279 df-xp 4618 df-rel 4619 df-cnv 4620 df-co 4621 df-dm 4622 df-rn 4623 df-res 4624 df-iota 5162 df-fun 5202 df-fn 5203 df-fv 5208 df-riota 5813 df-ov 5860 df-pnf 7960 df-mnf 7961 df-ltxr 7963 df-inn 8883 df-2 8941 df-ndx 12423 df-slot 12424 df-base 12426 df-plusg 12497 df-0g 12620 df-mgm 12632 df-sgrp 12665 df-mnd 12675 df-grp 12733 |
This theorem is referenced by: grp1inv 12828 |
Copyright terms: Public domain | W3C validator |