| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > grp1 | Unicode version | ||
| Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) | 
| Ref | Expression | 
|---|---|
| grp1.m | 
 | 
| Ref | Expression | 
|---|---|
| grp1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | grp1.m | 
. . 3
 | |
| 2 | 1 | mnd1 13087 | 
. 2
 | 
| 3 | df-ov 5925 | 
. . . . 5
 | |
| 4 | opexg 4261 | 
. . . . . . 7
 | |
| 5 | 4 | anidms 397 | 
. . . . . 6
 | 
| 6 | fvsng 5758 | 
. . . . . 6
 | |
| 7 | 5, 6 | mpancom 422 | 
. . . . 5
 | 
| 8 | 3, 7 | eqtrid 2241 | 
. . . 4
 | 
| 9 | 1 | mnd1id 13088 | 
. . . 4
 | 
| 10 | 8, 9 | eqtr4d 2232 | 
. . 3
 | 
| 11 | oveq2 5930 | 
. . . . . . 7
 | |
| 12 | 11 | eqeq1d 2205 | 
. . . . . 6
 | 
| 13 | 12 | rexbidv 2498 | 
. . . . 5
 | 
| 14 | 13 | ralsng 3662 | 
. . . 4
 | 
| 15 | oveq1 5929 | 
. . . . . 6
 | |
| 16 | 15 | eqeq1d 2205 | 
. . . . 5
 | 
| 17 | 16 | rexsng 3663 | 
. . . 4
 | 
| 18 | 14, 17 | bitrd 188 | 
. . 3
 | 
| 19 | 10, 18 | mpbird 167 | 
. 2
 | 
| 20 | eqid 2196 | 
. . . 4
 | |
| 21 | eqid 2196 | 
. . . 4
 | |
| 22 | eqid 2196 | 
. . . 4
 | |
| 23 | 20, 21, 22 | isgrp 13138 | 
. . 3
 | 
| 24 | snexg 4217 | 
. . . . . 6
 | |
| 25 | opexg 4261 | 
. . . . . . . 8
 | |
| 26 | 5, 25 | mpancom 422 | 
. . . . . . 7
 | 
| 27 | snexg 4217 | 
. . . . . . 7
 | |
| 28 | 26, 27 | syl 14 | 
. . . . . 6
 | 
| 29 | 1 | grpbaseg 12804 | 
. . . . . 6
 | 
| 30 | 24, 28, 29 | syl2anc 411 | 
. . . . 5
 | 
| 31 | 1 | grpplusgg 12805 | 
. . . . . . . . 9
 | 
| 32 | 24, 28, 31 | syl2anc 411 | 
. . . . . . . 8
 | 
| 33 | 32 | oveqd 5939 | 
. . . . . . 7
 | 
| 34 | 33 | eqeq1d 2205 | 
. . . . . 6
 | 
| 35 | 30, 34 | rexeqbidv 2710 | 
. . . . 5
 | 
| 36 | 30, 35 | raleqbidv 2709 | 
. . . 4
 | 
| 37 | 36 | anbi2d 464 | 
. . 3
 | 
| 38 | 23, 37 | bitr4id 199 | 
. 2
 | 
| 39 | 2, 19, 38 | mpbir2and 946 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-pre-ltirr 7991 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-fv 5266 df-riota 5877 df-ov 5925 df-pnf 8063 df-mnf 8064 df-ltxr 8066 df-inn 8991 df-2 9049 df-ndx 12681 df-slot 12682 df-base 12684 df-plusg 12768 df-0g 12929 df-mgm 12999 df-sgrp 13045 df-mnd 13058 df-grp 13135 | 
| This theorem is referenced by: grp1inv 13239 ring1 13615 | 
| Copyright terms: Public domain | W3C validator |