ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1 Unicode version

Theorem grp1 13438
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
grp1  |-  ( I  e.  V  ->  M  e.  Grp )

Proof of Theorem grp1
Dummy variables  e  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21mnd1 13287 . 2  |-  ( I  e.  V  ->  M  e.  Mnd )
3 df-ov 5947 . . . . 5  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opexg 4272 . . . . . . 7  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
54anidms 397 . . . . . 6  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
6 fvsng 5780 . . . . . 6  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
75, 6mpancom 422 . . . . 5  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
83, 7eqtrid 2250 . . . 4  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
91mnd1id 13288 . . . 4  |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
108, 9eqtr4d 2241 . . 3  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) )
11 oveq2 5952 . . . . . . 7  |-  ( i  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( e { <. <. I ,  I >. ,  I >. } I ) )
1211eqeq1d 2214 . . . . . 6  |-  ( i  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } i )  =  ( 0g `  M )  <->  ( e { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1312rexbidv 2507 . . . . 5  |-  ( i  =  I  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
1413ralsng 3673 . . . 4  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
15 oveq1 5951 . . . . . 6  |-  ( e  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1615eqeq1d 2214 . . . . 5  |-  ( e  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } I )  =  ( 0g `  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1716rexsng 3674 . . . 4  |-  ( I  e.  V  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1814, 17bitrd 188 . . 3  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1910, 18mpbird 167 . 2  |-  ( I  e.  V  ->  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) )
20 eqid 2205 . . . 4  |-  ( Base `  M )  =  (
Base `  M )
21 eqid 2205 . . . 4  |-  ( +g  `  M )  =  ( +g  `  M )
22 eqid 2205 . . . 4  |-  ( 0g
`  M )  =  ( 0g `  M
)
2320, 21, 22isgrp 13338 . . 3  |-  ( M  e.  Grp  <->  ( M  e.  Mnd  /\  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
24 snexg 4228 . . . . . 6  |-  ( I  e.  V  ->  { I }  e.  _V )
25 opexg 4272 . . . . . . . 8  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
265, 25mpancom 422 . . . . . . 7  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
27 snexg 4228 . . . . . . 7  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
2826, 27syl 14 . . . . . 6  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
291grpbaseg 12959 . . . . . 6  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
3024, 28, 29syl2anc 411 . . . . 5  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
311grpplusgg 12960 . . . . . . . . 9  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3224, 28, 31syl2anc 411 . . . . . . . 8  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3332oveqd 5961 . . . . . . 7  |-  ( I  e.  V  ->  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( e ( +g  `  M
) i ) )
3433eqeq1d 2214 . . . . . 6  |-  ( I  e.  V  ->  (
( e { <. <.
I ,  I >. ,  I >. } i )  =  ( 0g `  M )  <->  ( e
( +g  `  M ) i )  =  ( 0g `  M ) ) )
3530, 34rexeqbidv 2719 . . . . 5  |-  ( I  e.  V  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
3630, 35raleqbidv 2718 . . . 4  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
3736anbi2d 464 . . 3  |-  ( I  e.  V  ->  (
( M  e.  Mnd  /\ 
A. i  e.  {
I } E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g `  M ) )  <->  ( M  e. 
Mnd  /\  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) ) )
3823, 37bitr4id 199 . 2  |-  ( I  e.  V  ->  ( M  e.  Grp  <->  ( M  e.  Mnd  /\  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) ) ) )
392, 19, 38mpbir2and 947 1  |-  ( I  e.  V  ->  M  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   A.wral 2484   E.wrex 2485   _Vcvv 2772   {csn 3633   {cpr 3634   <.cop 3636   ` cfv 5271  (class class class)co 5944   ndxcnx 12829   Basecbs 12832   +g cplusg 12909   0gc0g 13088   Mndcmnd 13248   Grpcgrp 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279  df-riota 5899  df-ov 5947  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-ndx 12835  df-slot 12836  df-base 12838  df-plusg 12922  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-grp 13335
This theorem is referenced by:  grp1inv  13439  ring1  13821
  Copyright terms: Public domain W3C validator