ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grp1 Unicode version

Theorem grp1 13639
Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.)
Hypothesis
Ref Expression
grp1.m  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
Assertion
Ref Expression
grp1  |-  ( I  e.  V  ->  M  e.  Grp )

Proof of Theorem grp1
Dummy variables  e  i are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grp1.m . . 3  |-  M  =  { <. ( Base `  ndx ) ,  { I } >. ,  <. ( +g  `  ndx ) ,  { <. <. I ,  I >. ,  I >. } >. }
21mnd1 13488 . 2  |-  ( I  e.  V  ->  M  e.  Mnd )
3 df-ov 6004 . . . . 5  |-  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( {
<. <. I ,  I >. ,  I >. } `  <. I ,  I >. )
4 opexg 4314 . . . . . . 7  |-  ( ( I  e.  V  /\  I  e.  V )  -> 
<. I ,  I >.  e. 
_V )
54anidms 397 . . . . . 6  |-  ( I  e.  V  ->  <. I ,  I >.  e.  _V )
6 fvsng 5835 . . . . . 6  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
75, 6mpancom 422 . . . . 5  |-  ( I  e.  V  ->  ( { <. <. I ,  I >. ,  I >. } `  <. I ,  I >. )  =  I )
83, 7eqtrid 2274 . . . 4  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  I )
91mnd1id 13489 . . . 4  |-  ( I  e.  V  ->  ( 0g `  M )  =  I )
108, 9eqtr4d 2265 . . 3  |-  ( I  e.  V  ->  (
I { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) )
11 oveq2 6009 . . . . . . 7  |-  ( i  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( e { <. <. I ,  I >. ,  I >. } I ) )
1211eqeq1d 2238 . . . . . 6  |-  ( i  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } i )  =  ( 0g `  M )  <->  ( e { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1312rexbidv 2531 . . . . 5  |-  ( i  =  I  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
1413ralsng 3706 . . . 4  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( 0g `  M ) ) )
15 oveq1 6008 . . . . . 6  |-  ( e  =  I  ->  (
e { <. <. I ,  I >. ,  I >. } I )  =  ( I { <. <. I ,  I >. ,  I >. } I ) )
1615eqeq1d 2238 . . . . 5  |-  ( e  =  I  ->  (
( e { <. <.
I ,  I >. ,  I >. } I )  =  ( 0g `  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1716rexsng 3707 . . . 4  |-  ( I  e.  V  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1814, 17bitrd 188 . . 3  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  ( I { <. <. I ,  I >. ,  I >. } I
)  =  ( 0g
`  M ) ) )
1910, 18mpbird 167 . 2  |-  ( I  e.  V  ->  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) )
20 eqid 2229 . . . 4  |-  ( Base `  M )  =  (
Base `  M )
21 eqid 2229 . . . 4  |-  ( +g  `  M )  =  ( +g  `  M )
22 eqid 2229 . . . 4  |-  ( 0g
`  M )  =  ( 0g `  M
)
2320, 21, 22isgrp 13539 . . 3  |-  ( M  e.  Grp  <->  ( M  e.  Mnd  /\  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
24 snexg 4268 . . . . . 6  |-  ( I  e.  V  ->  { I }  e.  _V )
25 opexg 4314 . . . . . . . 8  |-  ( (
<. I ,  I >.  e. 
_V  /\  I  e.  V )  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
265, 25mpancom 422 . . . . . . 7  |-  ( I  e.  V  ->  <. <. I ,  I >. ,  I >.  e. 
_V )
27 snexg 4268 . . . . . . 7  |-  ( <. <. I ,  I >. ,  I >.  e.  _V  ->  { <. <. I ,  I >. ,  I >. }  e.  _V )
2826, 27syl 14 . . . . . 6  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  e.  _V )
291grpbaseg 13160 . . . . . 6  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { I }  =  ( Base `  M )
)
3024, 28, 29syl2anc 411 . . . . 5  |-  ( I  e.  V  ->  { I }  =  ( Base `  M ) )
311grpplusgg 13161 . . . . . . . . 9  |-  ( ( { I }  e.  _V  /\  { <. <. I ,  I >. ,  I >. }  e.  _V )  ->  { <. <. I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3224, 28, 31syl2anc 411 . . . . . . . 8  |-  ( I  e.  V  ->  { <. <.
I ,  I >. ,  I >. }  =  ( +g  `  M ) )
3332oveqd 6018 . . . . . . 7  |-  ( I  e.  V  ->  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( e ( +g  `  M
) i ) )
3433eqeq1d 2238 . . . . . 6  |-  ( I  e.  V  ->  (
( e { <. <.
I ,  I >. ,  I >. } i )  =  ( 0g `  M )  <->  ( e
( +g  `  M ) i )  =  ( 0g `  M ) ) )
3530, 34rexeqbidv 2745 . . . . 5  |-  ( I  e.  V  ->  ( E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
3630, 35raleqbidv 2744 . . . 4  |-  ( I  e.  V  ->  ( A. i  e.  { I } E. e  e.  {
I }  ( e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M )  <->  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) )
3736anbi2d 464 . . 3  |-  ( I  e.  V  ->  (
( M  e.  Mnd  /\ 
A. i  e.  {
I } E. e  e.  { I }  (
e { <. <. I ,  I >. ,  I >. } i )  =  ( 0g `  M ) )  <->  ( M  e. 
Mnd  /\  A. i  e.  ( Base `  M
) E. e  e.  ( Base `  M
) ( e ( +g  `  M ) i )  =  ( 0g `  M ) ) ) )
3823, 37bitr4id 199 . 2  |-  ( I  e.  V  ->  ( M  e.  Grp  <->  ( M  e.  Mnd  /\  A. i  e.  { I } E. e  e.  { I }  ( e {
<. <. I ,  I >. ,  I >. } i )  =  ( 0g
`  M ) ) ) )
392, 19, 38mpbir2and 950 1  |-  ( I  e.  V  ->  M  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   _Vcvv 2799   {csn 3666   {cpr 3667   <.cop 3669   ` cfv 5318  (class class class)co 6001   ndxcnx 13029   Basecbs 13032   +g cplusg 13110   0gc0g 13289   Mndcmnd 13449   Grpcgrp 13533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-iota 5278  df-fun 5320  df-fn 5321  df-fv 5326  df-riota 5954  df-ov 6004  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-ndx 13035  df-slot 13036  df-base 13038  df-plusg 13123  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536
This theorem is referenced by:  grp1inv  13640  ring1  14022
  Copyright terms: Public domain W3C validator