| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grp1 | Unicode version | ||
| Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| grp1.m |
|
| Ref | Expression |
|---|---|
| grp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m |
. . 3
| |
| 2 | 1 | mnd1 13157 |
. 2
|
| 3 | df-ov 5928 |
. . . . 5
| |
| 4 | opexg 4262 |
. . . . . . 7
| |
| 5 | 4 | anidms 397 |
. . . . . 6
|
| 6 | fvsng 5761 |
. . . . . 6
| |
| 7 | 5, 6 | mpancom 422 |
. . . . 5
|
| 8 | 3, 7 | eqtrid 2241 |
. . . 4
|
| 9 | 1 | mnd1id 13158 |
. . . 4
|
| 10 | 8, 9 | eqtr4d 2232 |
. . 3
|
| 11 | oveq2 5933 |
. . . . . . 7
| |
| 12 | 11 | eqeq1d 2205 |
. . . . . 6
|
| 13 | 12 | rexbidv 2498 |
. . . . 5
|
| 14 | 13 | ralsng 3663 |
. . . 4
|
| 15 | oveq1 5932 |
. . . . . 6
| |
| 16 | 15 | eqeq1d 2205 |
. . . . 5
|
| 17 | 16 | rexsng 3664 |
. . . 4
|
| 18 | 14, 17 | bitrd 188 |
. . 3
|
| 19 | 10, 18 | mpbird 167 |
. 2
|
| 20 | eqid 2196 |
. . . 4
| |
| 21 | eqid 2196 |
. . . 4
| |
| 22 | eqid 2196 |
. . . 4
| |
| 23 | 20, 21, 22 | isgrp 13208 |
. . 3
|
| 24 | snexg 4218 |
. . . . . 6
| |
| 25 | opexg 4262 |
. . . . . . . 8
| |
| 26 | 5, 25 | mpancom 422 |
. . . . . . 7
|
| 27 | snexg 4218 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 1 | grpbaseg 12829 |
. . . . . 6
|
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . 5
|
| 31 | 1 | grpplusgg 12830 |
. . . . . . . . 9
|
| 32 | 24, 28, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | oveqd 5942 |
. . . . . . 7
|
| 34 | 33 | eqeq1d 2205 |
. . . . . 6
|
| 35 | 30, 34 | rexeqbidv 2710 |
. . . . 5
|
| 36 | 30, 35 | raleqbidv 2709 |
. . . 4
|
| 37 | 36 | anbi2d 464 |
. . 3
|
| 38 | 23, 37 | bitr4id 199 |
. 2
|
| 39 | 2, 19, 38 | mpbir2and 946 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fn 5262 df-fv 5267 df-riota 5880 df-ov 5928 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-ndx 12706 df-slot 12707 df-base 12709 df-plusg 12793 df-0g 12960 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 |
| This theorem is referenced by: grp1inv 13309 ring1 13691 |
| Copyright terms: Public domain | W3C validator |