| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grp1 | Unicode version | ||
| Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| grp1.m |
|
| Ref | Expression |
|---|---|
| grp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m |
. . 3
| |
| 2 | 1 | mnd1 13287 |
. 2
|
| 3 | df-ov 5947 |
. . . . 5
| |
| 4 | opexg 4272 |
. . . . . . 7
| |
| 5 | 4 | anidms 397 |
. . . . . 6
|
| 6 | fvsng 5780 |
. . . . . 6
| |
| 7 | 5, 6 | mpancom 422 |
. . . . 5
|
| 8 | 3, 7 | eqtrid 2250 |
. . . 4
|
| 9 | 1 | mnd1id 13288 |
. . . 4
|
| 10 | 8, 9 | eqtr4d 2241 |
. . 3
|
| 11 | oveq2 5952 |
. . . . . . 7
| |
| 12 | 11 | eqeq1d 2214 |
. . . . . 6
|
| 13 | 12 | rexbidv 2507 |
. . . . 5
|
| 14 | 13 | ralsng 3673 |
. . . 4
|
| 15 | oveq1 5951 |
. . . . . 6
| |
| 16 | 15 | eqeq1d 2214 |
. . . . 5
|
| 17 | 16 | rexsng 3674 |
. . . 4
|
| 18 | 14, 17 | bitrd 188 |
. . 3
|
| 19 | 10, 18 | mpbird 167 |
. 2
|
| 20 | eqid 2205 |
. . . 4
| |
| 21 | eqid 2205 |
. . . 4
| |
| 22 | eqid 2205 |
. . . 4
| |
| 23 | 20, 21, 22 | isgrp 13338 |
. . 3
|
| 24 | snexg 4228 |
. . . . . 6
| |
| 25 | opexg 4272 |
. . . . . . . 8
| |
| 26 | 5, 25 | mpancom 422 |
. . . . . . 7
|
| 27 | snexg 4228 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 1 | grpbaseg 12959 |
. . . . . 6
|
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . 5
|
| 31 | 1 | grpplusgg 12960 |
. . . . . . . . 9
|
| 32 | 24, 28, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | oveqd 5961 |
. . . . . . 7
|
| 34 | 33 | eqeq1d 2214 |
. . . . . 6
|
| 35 | 30, 34 | rexeqbidv 2719 |
. . . . 5
|
| 36 | 30, 35 | raleqbidv 2718 |
. . . 4
|
| 37 | 36 | anbi2d 464 |
. . 3
|
| 38 | 23, 37 | bitr4id 199 |
. 2
|
| 39 | 2, 19, 38 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-pre-ltirr 8037 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-iota 5232 df-fun 5273 df-fn 5274 df-fv 5279 df-riota 5899 df-ov 5947 df-pnf 8109 df-mnf 8110 df-ltxr 8112 df-inn 9037 df-2 9095 df-ndx 12835 df-slot 12836 df-base 12838 df-plusg 12922 df-0g 13090 df-mgm 13188 df-sgrp 13234 df-mnd 13249 df-grp 13335 |
| This theorem is referenced by: grp1inv 13439 ring1 13821 |
| Copyright terms: Public domain | W3C validator |