| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > grp1 | Unicode version | ||
| Description: The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| Ref | Expression |
|---|---|
| grp1.m |
|
| Ref | Expression |
|---|---|
| grp1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grp1.m |
. . 3
| |
| 2 | 1 | mnd1 13402 |
. 2
|
| 3 | df-ov 5970 |
. . . . 5
| |
| 4 | opexg 4290 |
. . . . . . 7
| |
| 5 | 4 | anidms 397 |
. . . . . 6
|
| 6 | fvsng 5803 |
. . . . . 6
| |
| 7 | 5, 6 | mpancom 422 |
. . . . 5
|
| 8 | 3, 7 | eqtrid 2252 |
. . . 4
|
| 9 | 1 | mnd1id 13403 |
. . . 4
|
| 10 | 8, 9 | eqtr4d 2243 |
. . 3
|
| 11 | oveq2 5975 |
. . . . . . 7
| |
| 12 | 11 | eqeq1d 2216 |
. . . . . 6
|
| 13 | 12 | rexbidv 2509 |
. . . . 5
|
| 14 | 13 | ralsng 3683 |
. . . 4
|
| 15 | oveq1 5974 |
. . . . . 6
| |
| 16 | 15 | eqeq1d 2216 |
. . . . 5
|
| 17 | 16 | rexsng 3684 |
. . . 4
|
| 18 | 14, 17 | bitrd 188 |
. . 3
|
| 19 | 10, 18 | mpbird 167 |
. 2
|
| 20 | eqid 2207 |
. . . 4
| |
| 21 | eqid 2207 |
. . . 4
| |
| 22 | eqid 2207 |
. . . 4
| |
| 23 | 20, 21, 22 | isgrp 13453 |
. . 3
|
| 24 | snexg 4244 |
. . . . . 6
| |
| 25 | opexg 4290 |
. . . . . . . 8
| |
| 26 | 5, 25 | mpancom 422 |
. . . . . . 7
|
| 27 | snexg 4244 |
. . . . . . 7
| |
| 28 | 26, 27 | syl 14 |
. . . . . 6
|
| 29 | 1 | grpbaseg 13074 |
. . . . . 6
|
| 30 | 24, 28, 29 | syl2anc 411 |
. . . . 5
|
| 31 | 1 | grpplusgg 13075 |
. . . . . . . . 9
|
| 32 | 24, 28, 31 | syl2anc 411 |
. . . . . . . 8
|
| 33 | 32 | oveqd 5984 |
. . . . . . 7
|
| 34 | 33 | eqeq1d 2216 |
. . . . . 6
|
| 35 | 30, 34 | rexeqbidv 2722 |
. . . . 5
|
| 36 | 30, 35 | raleqbidv 2721 |
. . . 4
|
| 37 | 36 | anbi2d 464 |
. . 3
|
| 38 | 23, 37 | bitr4id 199 |
. 2
|
| 39 | 2, 19, 38 | mpbir2and 947 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-pre-ltirr 8072 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-iota 5251 df-fun 5292 df-fn 5293 df-fv 5298 df-riota 5922 df-ov 5970 df-pnf 8144 df-mnf 8145 df-ltxr 8147 df-inn 9072 df-2 9130 df-ndx 12950 df-slot 12951 df-base 12953 df-plusg 13037 df-0g 13205 df-mgm 13303 df-sgrp 13349 df-mnd 13364 df-grp 13450 |
| This theorem is referenced by: grp1inv 13554 ring1 13936 |
| Copyright terms: Public domain | W3C validator |