ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbidv GIF version

Theorem rexeqbidv 2710
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1 (𝜑𝐴 = 𝐵)
raleqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexeqbidv (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rexeqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
21rexeqdv 2700 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
3 raleqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
43rexbidv 2498 . 2 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥𝐵 𝜒))
52, 4bitrd 188 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wrex 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481
This theorem is referenced by:  supeq123d  7066  gsumfzval  13095  gsumval2  13101  ismnddef  13122  mndpropd  13144  mnd1  13159  isgrp  13210  isgrpd2e  13224  grp1  13310  issrgid  13615  isringid  13659  reldvdsrsrg  13726  dvdsrvald  13727  rspsn  14168  mplvalcoe  14324
  Copyright terms: Public domain W3C validator