ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexeqbidv GIF version

Theorem rexeqbidv 2696
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1 (𝜑𝐴 = 𝐵)
raleqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
rexeqbidv (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rexeqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
21rexeqdv 2690 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜓))
3 raleqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
43rexbidv 2488 . 2 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑥𝐵 𝜒))
52, 4bitrd 188 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1363  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471
This theorem is referenced by:  supeq123d  7003  ismnddef  12840  mndpropd  12862  mnd1  12868  isgrp  12904  isgrpd2e  12917  grp1  13002  issrgid  13228  isringid  13272  reldvdsrsrg  13335  dvdsrvald  13336
  Copyright terms: Public domain W3C validator