Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isgrpd2e | Unicode version |
Description: Deduce a group from its properties. In this version of isgrpd2 12727, we don't assume there is an expression for the inverse of . (Contributed by NM, 10-Aug-2013.) |
Ref | Expression |
---|---|
isgrpd2.b | |
isgrpd2.p | |
isgrpd2.z | |
isgrpd2.g | |
isgrpd2e.n |
Ref | Expression |
---|---|
isgrpd2e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isgrpd2.g | . 2 | |
2 | isgrpd2e.n | . . . 4 | |
3 | 2 | ralrimiva 2543 | . . 3 |
4 | isgrpd2.b | . . . 4 | |
5 | isgrpd2.p | . . . . . . 7 | |
6 | 5 | oveqd 5870 | . . . . . 6 |
7 | isgrpd2.z | . . . . . 6 | |
8 | 6, 7 | eqeq12d 2185 | . . . . 5 |
9 | 4, 8 | rexeqbidv 2678 | . . . 4 |
10 | 4, 9 | raleqbidv 2677 | . . 3 |
11 | 3, 10 | mpbid 146 | . 2 |
12 | eqid 2170 | . . 3 | |
13 | eqid 2170 | . . 3 | |
14 | eqid 2170 | . . 3 | |
15 | 12, 13, 14 | isgrp 12714 | . 2 |
16 | 1, 11, 15 | sylanbrc 415 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 wrex 2449 cfv 5198 (class class class)co 5853 cbs 12416 cplusg 12480 c0g 12596 cmnd 12652 cgrp 12708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-grp 12711 |
This theorem is referenced by: isgrpd2 12727 isgrpde 12728 |
Copyright terms: Public domain | W3C validator |