| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrpd2e | Unicode version | ||
| Description: Deduce a group from its
properties. In this version of isgrpd2 13549, we
don't assume there is an expression for the inverse of |
| Ref | Expression |
|---|---|
| isgrpd2.b |
|
| isgrpd2.p |
|
| isgrpd2.z |
|
| isgrpd2.g |
|
| isgrpd2e.n |
|
| Ref | Expression |
|---|---|
| isgrpd2e |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isgrpd2.g |
. 2
| |
| 2 | isgrpd2e.n |
. . . 4
| |
| 3 | 2 | ralrimiva 2603 |
. . 3
|
| 4 | isgrpd2.b |
. . . 4
| |
| 5 | isgrpd2.p |
. . . . . . 7
| |
| 6 | 5 | oveqd 6017 |
. . . . . 6
|
| 7 | isgrpd2.z |
. . . . . 6
| |
| 8 | 6, 7 | eqeq12d 2244 |
. . . . 5
|
| 9 | 4, 8 | rexeqbidv 2745 |
. . . 4
|
| 10 | 4, 9 | raleqbidv 2744 |
. . 3
|
| 11 | 3, 10 | mpbid 147 |
. 2
|
| 12 | eqid 2229 |
. . 3
| |
| 13 | eqid 2229 |
. . 3
| |
| 14 | eqid 2229 |
. . 3
| |
| 15 | 12, 13, 14 | isgrp 13534 |
. 2
|
| 16 | 1, 11, 15 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-grp 13531 |
| This theorem is referenced by: isgrpd2 13549 isgrpde 13550 |
| Copyright terms: Public domain | W3C validator |