ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrpd2e Unicode version

Theorem isgrpd2e 13427
Description: Deduce a group from its properties. In this version of isgrpd2 13428, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd2.z  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
isgrpd2.g  |-  ( ph  ->  G  e.  Mnd )
isgrpd2e.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpd2e  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,  .+    y,  .0.    x, B, y    x, G, y    ph, x, y
Allowed substitution hint:    .0. ( x)

Proof of Theorem isgrpd2e
StepHypRef Expression
1 isgrpd2.g . 2  |-  ( ph  ->  G  e.  Mnd )
2 isgrpd2e.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
32ralrimiva 2580 . . 3  |-  ( ph  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  .0.  )
4 isgrpd2.b . . . 4  |-  ( ph  ->  B  =  ( Base `  G ) )
5 isgrpd2.p . . . . . . 7  |-  ( ph  ->  .+  =  ( +g  `  G ) )
65oveqd 5974 . . . . . 6  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  G
) x ) )
7 isgrpd2.z . . . . . 6  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
86, 7eqeq12d 2221 . . . . 5  |-  ( ph  ->  ( ( y  .+  x )  =  .0.  <->  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )
94, 8rexeqbidv 2720 . . . 4  |-  ( ph  ->  ( E. y  e.  B  ( y  .+  x )  =  .0.  <->  E. y  e.  ( Base `  G ) ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )
104, 9raleqbidv 2719 . . 3  |-  ( ph  ->  ( A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  <->  A. x  e.  ( Base `  G ) E. y  e.  ( Base `  G
) ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
113, 10mpbid 147 . 2  |-  ( ph  ->  A. x  e.  (
Base `  G ) E. y  e.  ( Base `  G ) ( y ( +g  `  G
) x )  =  ( 0g `  G
) )
12 eqid 2206 . . 3  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2206 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2206 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
1512, 13, 14isgrp 13413 . 2  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. x  e.  ( Base `  G
) E. y  e.  ( Base `  G
) ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
161, 11, 15sylanbrc 417 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   0gc0g 13163   Mndcmnd 13323   Grpcgrp 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960  df-grp 13410
This theorem is referenced by:  isgrpd2  13428  isgrpde  13429
  Copyright terms: Public domain W3C validator