| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isgrp | Unicode version | ||
| Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| isgrp.b |
|
| isgrp.p |
|
| isgrp.z |
|
| Ref | Expression |
|---|---|
| isgrp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 |
. . . 4
| |
| 2 | isgrp.b |
. . . 4
| |
| 3 | 1, 2 | eqtr4di 2247 |
. . 3
|
| 4 | fveq2 5558 |
. . . . . . 7
| |
| 5 | isgrp.p |
. . . . . . 7
| |
| 6 | 4, 5 | eqtr4di 2247 |
. . . . . 6
|
| 7 | 6 | oveqd 5939 |
. . . . 5
|
| 8 | fveq2 5558 |
. . . . . 6
| |
| 9 | isgrp.z |
. . . . . 6
| |
| 10 | 8, 9 | eqtr4di 2247 |
. . . . 5
|
| 11 | 7, 10 | eqeq12d 2211 |
. . . 4
|
| 12 | 3, 11 | rexeqbidv 2710 |
. . 3
|
| 13 | 3, 12 | raleqbidv 2709 |
. 2
|
| 14 | df-grp 13135 |
. 2
| |
| 15 | 13, 14 | elrab2 2923 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-grp 13135 |
| This theorem is referenced by: grpmnd 13139 grpinvex 13142 grppropd 13149 isgrpd2e 13152 grp1 13238 ghmgrp 13248 |
| Copyright terms: Public domain | W3C validator |