ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrp Unicode version

Theorem isgrp 12883
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b  |-  B  =  ( Base `  G
)
isgrp.p  |-  .+  =  ( +g  `  G )
isgrp.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isgrp  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Distinct variable groups:    m, a, B    G, a, m
Allowed substitution hints:    .+ ( m, a)    .0. (
m, a)

Proof of Theorem isgrp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5516 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 isgrp.b . . . 4  |-  B  =  ( Base `  G
)
31, 2eqtr4di 2228 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 fveq2 5516 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
5 isgrp.p . . . . . . 7  |-  .+  =  ( +g  `  G )
64, 5eqtr4di 2228 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
76oveqd 5892 . . . . 5  |-  ( g  =  G  ->  (
m ( +g  `  g
) a )  =  ( m  .+  a
) )
8 fveq2 5516 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
9 isgrp.z . . . . . 6  |-  .0.  =  ( 0g `  G )
108, 9eqtr4di 2228 . . . . 5  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
117, 10eqeq12d 2192 . . . 4  |-  ( g  =  G  ->  (
( m ( +g  `  g ) a )  =  ( 0g `  g )  <->  ( m  .+  a )  =  .0.  ) )
123, 11rexeqbidv 2686 . . 3  |-  ( g  =  G  ->  ( E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
133, 12raleqbidv 2685 . 2  |-  ( g  =  G  ->  ( A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
14 df-grp 12880 . 2  |-  Grp  =  { g  e.  Mnd  | 
A. a  e.  (
Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
) }
1513, 14elrab2 2897 1  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   ` cfv 5217  (class class class)co 5875   Basecbs 12462   +g cplusg 12536   0gc0g 12705   Mndcmnd 12817   Grpcgrp 12877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-un 3134  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-iota 5179  df-fv 5225  df-ov 5878  df-grp 12880
This theorem is referenced by:  grpmnd  12884  grpinvex  12887  grppropd  12893  isgrpd2e  12896  grp1  12976  ghmgrp  12982
  Copyright terms: Public domain W3C validator