ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isgrp Unicode version

Theorem isgrp 13078
Description: The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
isgrp.b  |-  B  =  ( Base `  G
)
isgrp.p  |-  .+  =  ( +g  `  G )
isgrp.z  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
isgrp  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Distinct variable groups:    m, a, B    G, a, m
Allowed substitution hints:    .+ ( m, a)    .0. (
m, a)

Proof of Theorem isgrp
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . 4  |-  ( g  =  G  ->  ( Base `  g )  =  ( Base `  G
) )
2 isgrp.b . . . 4  |-  B  =  ( Base `  G
)
31, 2eqtr4di 2244 . . 3  |-  ( g  =  G  ->  ( Base `  g )  =  B )
4 fveq2 5554 . . . . . . 7  |-  ( g  =  G  ->  ( +g  `  g )  =  ( +g  `  G
) )
5 isgrp.p . . . . . . 7  |-  .+  =  ( +g  `  G )
64, 5eqtr4di 2244 . . . . . 6  |-  ( g  =  G  ->  ( +g  `  g )  = 
.+  )
76oveqd 5935 . . . . 5  |-  ( g  =  G  ->  (
m ( +g  `  g
) a )  =  ( m  .+  a
) )
8 fveq2 5554 . . . . . 6  |-  ( g  =  G  ->  ( 0g `  g )  =  ( 0g `  G
) )
9 isgrp.z . . . . . 6  |-  .0.  =  ( 0g `  G )
108, 9eqtr4di 2244 . . . . 5  |-  ( g  =  G  ->  ( 0g `  g )  =  .0.  )
117, 10eqeq12d 2208 . . . 4  |-  ( g  =  G  ->  (
( m ( +g  `  g ) a )  =  ( 0g `  g )  <->  ( m  .+  a )  =  .0.  ) )
123, 11rexeqbidv 2707 . . 3  |-  ( g  =  G  ->  ( E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
133, 12raleqbidv 2706 . 2  |-  ( g  =  G  ->  ( A. a  e.  ( Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
)  <->  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
14 df-grp 13075 . 2  |-  Grp  =  { g  e.  Mnd  | 
A. a  e.  (
Base `  g ) E. m  e.  ( Base `  g ) ( m ( +g  `  g
) a )  =  ( 0g `  g
) }
1513, 14elrab2 2919 1  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. a  e.  B  E. m  e.  B  ( m  .+  a )  =  .0.  ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997   Grpcgrp 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-grp 13075
This theorem is referenced by:  grpmnd  13079  grpinvex  13082  grppropd  13089  isgrpd2e  13092  grp1  13178  ghmgrp  13188
  Copyright terms: Public domain W3C validator