ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn02n Unicode version

Theorem evennn02n 12064
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn02n  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  NN0  ( 2  x.  n )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem evennn02n
StepHypRef Expression
1 eleq1 2259 . . . . . . . 8  |-  ( ( 2  x.  n )  =  N  ->  (
( 2  x.  n
)  e.  NN0  <->  N  e.  NN0 ) )
2 simpr 110 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  ZZ )
3 2re 9077 . . . . . . . . . . . 12  |-  2  e.  RR
43a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  2  e.  RR )
5 zre 9347 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  RR )
65adantl 277 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  RR )
7 2pos 9098 . . . . . . . . . . . 12  |-  0  <  2
87a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <  2 )
9 nn0ge0 9291 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  NN0  ->  0  <_ 
( 2  x.  n
) )
109adantr 276 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <_  ( 2  x.  n ) )
11 prodge0 8898 . . . . . . . . . . 11  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  n
) ) )  -> 
0  <_  n )
124, 6, 8, 10, 11syl22anc 1250 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <_  n )
13 elnn0z 9356 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
142, 12, 13sylanbrc 417 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  NN0 )
1514ex 115 . . . . . . . 8  |-  ( ( 2  x.  n )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
161, 15biimtrrdi 164 . . . . . . 7  |-  ( ( 2  x.  n )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1716com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( 2  x.  n
)  =  N  ->  n  e.  NN0 ) ) )
1817impcom 125 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  ->  n  e.  NN0 ) )
1918pm4.71rd 394 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  <-> 
( n  e.  NN0  /\  ( 2  x.  n
)  =  N ) ) )
2019bicomd 141 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( 2  x.  n )  =  N )  <->  ( 2  x.  n )  =  N ) )
2120rexbidva 2494 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( 2  x.  n
)  =  N )  <->  E. n  e.  ZZ  ( 2  x.  n
)  =  N ) )
22 nn0ssz 9361 . . 3  |-  NN0  C_  ZZ
23 rexss 3251 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( 2  x.  n )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( 2  x.  n
)  =  N ) ) )
2422, 23mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
2  x.  n )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( 2  x.  n )  =  N ) ) )
25 even2n 12056 . . 3  |-  ( 2 
||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N )
2625a1i 9 . 2  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N ) )
2721, 24, 263bitr4rd 221 1  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  NN0  ( 2  x.  n )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476    C_ wss 3157   class class class wbr 4034  (class class class)co 5925   RRcr 7895   0cc0 7896    x. cmul 7901    < clt 8078    <_ cle 8079   2c2 9058   NN0cn0 9266   ZZcz 9343    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-dvds 11970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator