ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn02n Unicode version

Theorem evennn02n 11568
Description: A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn02n  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  NN0  ( 2  x.  n )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem evennn02n
StepHypRef Expression
1 eleq1 2200 . . . . . . . 8  |-  ( ( 2  x.  n )  =  N  ->  (
( 2  x.  n
)  e.  NN0  <->  N  e.  NN0 ) )
2 simpr 109 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  ZZ )
3 2re 8783 . . . . . . . . . . . 12  |-  2  e.  RR
43a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  2  e.  RR )
5 zre 9051 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  RR )
65adantl 275 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  RR )
7 2pos 8804 . . . . . . . . . . . 12  |-  0  <  2
87a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <  2 )
9 nn0ge0 8995 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  NN0  ->  0  <_ 
( 2  x.  n
) )
109adantr 274 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <_  ( 2  x.  n ) )
11 prodge0 8605 . . . . . . . . . . 11  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <  2  /\  0  <_ 
( 2  x.  n
) ) )  -> 
0  <_  n )
124, 6, 8, 10, 11syl22anc 1217 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  0  <_  n )
13 elnn0z 9060 . . . . . . . . . 10  |-  ( n  e.  NN0  <->  ( n  e.  ZZ  /\  0  <_  n ) )
142, 12, 13sylanbrc 413 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  e.  NN0  /\  n  e.  ZZ )  ->  n  e.  NN0 )
1514ex 114 . . . . . . . 8  |-  ( ( 2  x.  n )  e.  NN0  ->  ( n  e.  ZZ  ->  n  e.  NN0 ) )
161, 15syl6bir 163 . . . . . . 7  |-  ( ( 2  x.  n )  =  N  ->  ( N  e.  NN0  ->  (
n  e.  ZZ  ->  n  e.  NN0 ) ) )
1716com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN0  ->  (
( 2  x.  n
)  =  N  ->  n  e.  NN0 ) ) )
1817impcom 124 . . . . 5  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  ->  n  e.  NN0 ) )
1918pm4.71rd 391 . . . 4  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  <-> 
( n  e.  NN0  /\  ( 2  x.  n
)  =  N ) ) )
2019bicomd 140 . . 3  |-  ( ( N  e.  NN0  /\  n  e.  ZZ )  ->  ( ( n  e. 
NN0  /\  ( 2  x.  n )  =  N )  <->  ( 2  x.  n )  =  N ) )
2120rexbidva 2432 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  ZZ  (
n  e.  NN0  /\  ( 2  x.  n
)  =  N )  <->  E. n  e.  ZZ  ( 2  x.  n
)  =  N ) )
22 nn0ssz 9065 . . 3  |-  NN0  C_  ZZ
23 rexss 3159 . . 3  |-  ( NN0  C_  ZZ  ->  ( E. n  e.  NN0  ( 2  x.  n )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN0  /\  ( 2  x.  n
)  =  N ) ) )
2422, 23mp1i 10 . 2  |-  ( N  e.  NN0  ->  ( E. n  e.  NN0  (
2  x.  n )  =  N  <->  E. n  e.  ZZ  ( n  e. 
NN0  /\  ( 2  x.  n )  =  N ) ) )
25 even2n 11560 . . 3  |-  ( 2 
||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N )
2625a1i 9 . 2  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N ) )
2721, 24, 263bitr4rd 220 1  |-  ( N  e.  NN0  ->  ( 2 
||  N  <->  E. n  e.  NN0  ( 2  x.  n )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415    C_ wss 3066   class class class wbr 3924  (class class class)co 5767   RRcr 7612   0cc0 7613    x. cmul 7618    < clt 7793    <_ cle 7794   2c2 8764   NN0cn0 8970   ZZcz 9047    || cdvds 11482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-2 8772  df-n0 8971  df-z 9048  df-dvds 11483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator