ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  evennn2n Unicode version

Theorem evennn2n 12027
Description: A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
Assertion
Ref Expression
evennn2n  |-  ( N  e.  NN  ->  (
2  ||  N  <->  E. n  e.  NN  ( 2  x.  n )  =  N ) )
Distinct variable group:    n, N

Proof of Theorem evennn2n
StepHypRef Expression
1 eleq1 2256 . . . . . . . 8  |-  ( ( 2  x.  n )  =  N  ->  (
( 2  x.  n
)  e.  NN  <->  N  e.  NN ) )
2 simpr 110 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  n  e.  ZZ )
3 2re 9054 . . . . . . . . . . . 12  |-  2  e.  RR
43a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  2  e.  RR )
5 zre 9324 . . . . . . . . . . . 12  |-  ( n  e.  ZZ  ->  n  e.  RR )
65adantl 277 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  n  e.  RR )
7 0le2 9074 . . . . . . . . . . . 12  |-  0  <_  2
87a1i 9 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  0  <_  2 )
9 nngt0 9009 . . . . . . . . . . . 12  |-  ( ( 2  x.  n )  e.  NN  ->  0  <  ( 2  x.  n
) )
109adantr 276 . . . . . . . . . . 11  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  0  <  ( 2  x.  n ) )
11 prodgt0 8873 . . . . . . . . . . 11  |-  ( ( ( 2  e.  RR  /\  n  e.  RR )  /\  ( 0  <_ 
2  /\  0  <  ( 2  x.  n ) ) )  ->  0  <  n )
124, 6, 8, 10, 11syl22anc 1250 . . . . . . . . . 10  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  0  <  n )
13 elnnz 9330 . . . . . . . . . 10  |-  ( n  e.  NN  <->  ( n  e.  ZZ  /\  0  < 
n ) )
142, 12, 13sylanbrc 417 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  e.  NN  /\  n  e.  ZZ )  ->  n  e.  NN )
1514ex 115 . . . . . . . 8  |-  ( ( 2  x.  n )  e.  NN  ->  (
n  e.  ZZ  ->  n  e.  NN ) )
161, 15biimtrrdi 164 . . . . . . 7  |-  ( ( 2  x.  n )  =  N  ->  ( N  e.  NN  ->  ( n  e.  ZZ  ->  n  e.  NN ) ) )
1716com13 80 . . . . . 6  |-  ( n  e.  ZZ  ->  ( N  e.  NN  ->  ( ( 2  x.  n
)  =  N  ->  n  e.  NN )
) )
1817impcom 125 . . . . 5  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  ->  n  e.  NN ) )
1918pm4.71rd 394 . . . 4  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( 2  x.  n )  =  N  <-> 
( n  e.  NN  /\  ( 2  x.  n
)  =  N ) ) )
2019bicomd 141 . . 3  |-  ( ( N  e.  NN  /\  n  e.  ZZ )  ->  ( ( n  e.  NN  /\  ( 2  x.  n )  =  N )  <->  ( 2  x.  n )  =  N ) )
2120rexbidva 2491 . 2  |-  ( N  e.  NN  ->  ( E. n  e.  ZZ  ( n  e.  NN  /\  ( 2  x.  n
)  =  N )  <->  E. n  e.  ZZ  ( 2  x.  n
)  =  N ) )
22 nnssz 9337 . . 3  |-  NN  C_  ZZ
23 rexss 3247 . . 3  |-  ( NN  C_  ZZ  ->  ( E. n  e.  NN  (
2  x.  n )  =  N  <->  E. n  e.  ZZ  ( n  e.  NN  /\  ( 2  x.  n )  =  N ) ) )
2422, 23mp1i 10 . 2  |-  ( N  e.  NN  ->  ( E. n  e.  NN  ( 2  x.  n
)  =  N  <->  E. n  e.  ZZ  ( n  e.  NN  /\  ( 2  x.  n )  =  N ) ) )
25 even2n 12018 . . 3  |-  ( 2 
||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N )
2625a1i 9 . 2  |-  ( N  e.  NN  ->  (
2  ||  N  <->  E. n  e.  ZZ  ( 2  x.  n )  =  N ) )
2721, 24, 263bitr4rd 221 1  |-  ( N  e.  NN  ->  (
2  ||  N  <->  E. n  e.  NN  ( 2  x.  n )  =  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   E.wrex 2473    C_ wss 3154   class class class wbr 4030  (class class class)co 5919   RRcr 7873   0cc0 7874    x. cmul 7879    < clt 8056    <_ cle 8057   NNcn 8984   2c2 9035   ZZcz 9320    || cdvds 11933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-mulrcl 7973  ax-addcom 7974  ax-mulcom 7975  ax-addass 7976  ax-mulass 7977  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-1rid 7981  ax-0id 7982  ax-rnegex 7983  ax-precex 7984  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990  ax-pre-mulgt0 7991  ax-pre-mulext 7992
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-po 4328  df-iso 4329  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-reap 8596  df-ap 8603  df-div 8694  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321  df-dvds 11934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator