| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) | 
| Ref | Expression | 
|---|---|
| rpred.1 | 
 | 
| Ref | Expression | 
|---|---|
| rpregt0d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rpred.1 | 
. . 3
 | |
| 2 | 1 | rpred 9771 | 
. 2
 | 
| 3 | 1 | rpgt0d 9774 | 
. 2
 | 
| 4 | 2, 3 | jca 306 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-rp 9729 | 
| This theorem is referenced by: reclt1d 9785 recgt1d 9786 ltrecd 9790 lerecd 9791 ltrec1d 9792 lerec2d 9793 lediv2ad 9794 ltdiv2d 9795 lediv2d 9796 ledivdivd 9797 divge0d 9812 ltmul1d 9813 ltmul2d 9814 lemul1d 9815 lemul2d 9816 ltdiv1d 9817 lediv1d 9818 ltmuldivd 9819 ltmuldiv2d 9820 lemuldivd 9821 lemuldiv2d 9822 ltdivmuld 9823 ltdivmul2d 9824 ledivmuld 9825 ledivmul2d 9826 ltdiv23d 9832 lediv23d 9833 lt2mul2divd 9840 mertenslemi1 11700 isprm6 12315 | 
| Copyright terms: Public domain | W3C validator |