| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpregt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9888 |
. 2
|
| 3 | 1 | rpgt0d 9891 |
. 2
|
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-rp 9846 |
| This theorem is referenced by: reclt1d 9902 recgt1d 9903 ltrecd 9907 lerecd 9908 ltrec1d 9909 lerec2d 9910 lediv2ad 9911 ltdiv2d 9912 lediv2d 9913 ledivdivd 9914 divge0d 9929 ltmul1d 9930 ltmul2d 9931 lemul1d 9932 lemul2d 9933 ltdiv1d 9934 lediv1d 9935 ltmuldivd 9936 ltmuldiv2d 9937 lemuldivd 9938 lemuldiv2d 9939 ltdivmuld 9940 ltdivmul2d 9941 ledivmuld 9942 ledivmul2d 9943 ltdiv23d 9949 lediv23d 9950 lt2mul2divd 9957 mertenslemi1 12041 isprm6 12664 |
| Copyright terms: Public domain | W3C validator |