![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rpregt0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rpred 9728 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1 | rpgt0d 9731 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 2, 3 | jca 306 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-rp 9686 |
This theorem is referenced by: reclt1d 9742 recgt1d 9743 ltrecd 9747 lerecd 9748 ltrec1d 9749 lerec2d 9750 lediv2ad 9751 ltdiv2d 9752 lediv2d 9753 ledivdivd 9754 divge0d 9769 ltmul1d 9770 ltmul2d 9771 lemul1d 9772 lemul2d 9773 ltdiv1d 9774 lediv1d 9775 ltmuldivd 9776 ltmuldiv2d 9777 lemuldivd 9778 lemuldiv2d 9779 ltdivmuld 9780 ltdivmul2d 9781 ledivmuld 9782 ledivmul2d 9783 ltdiv23d 9789 lediv23d 9790 lt2mul2divd 9797 mertenslemi1 11578 isprm6 12182 |
Copyright terms: Public domain | W3C validator |