![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rpregt0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | rpred 9765 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1 | rpgt0d 9768 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 2, 3 | jca 306 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-rp 9723 |
This theorem is referenced by: reclt1d 9779 recgt1d 9780 ltrecd 9784 lerecd 9785 ltrec1d 9786 lerec2d 9787 lediv2ad 9788 ltdiv2d 9789 lediv2d 9790 ledivdivd 9791 divge0d 9806 ltmul1d 9807 ltmul2d 9808 lemul1d 9809 lemul2d 9810 ltdiv1d 9811 lediv1d 9812 ltmuldivd 9813 ltmuldiv2d 9814 lemuldivd 9815 lemuldiv2d 9816 ltdivmuld 9817 ltdivmul2d 9818 ledivmuld 9819 ledivmul2d 9820 ltdiv23d 9826 lediv23d 9827 lt2mul2divd 9834 mertenslemi1 11681 isprm6 12288 |
Copyright terms: Public domain | W3C validator |