Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
Ref | Expression |
---|---|
rpregt0d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 | |
2 | 1 | rpred 9665 | . 2 |
3 | 1 | rpgt0d 9668 | . 2 |
4 | 2, 3 | jca 306 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wcel 2146 class class class wbr 3998 cr 7785 cc0 7786 clt 7966 crp 9622 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-rp 9623 |
This theorem is referenced by: reclt1d 9679 recgt1d 9680 ltrecd 9684 lerecd 9685 ltrec1d 9686 lerec2d 9687 lediv2ad 9688 ltdiv2d 9689 lediv2d 9690 ledivdivd 9691 divge0d 9706 ltmul1d 9707 ltmul2d 9708 lemul1d 9709 lemul2d 9710 ltdiv1d 9711 lediv1d 9712 ltmuldivd 9713 ltmuldiv2d 9714 lemuldivd 9715 lemuldiv2d 9716 ltdivmuld 9717 ltdivmul2d 9718 ledivmuld 9719 ledivmul2d 9720 ltdiv23d 9726 lediv23d 9727 lt2mul2divd 9734 mertenslemi1 11509 isprm6 12112 |
Copyright terms: Public domain | W3C validator |