| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpregt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9790 |
. 2
|
| 3 | 1 | rpgt0d 9793 |
. 2
|
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9748 |
| This theorem is referenced by: reclt1d 9804 recgt1d 9805 ltrecd 9809 lerecd 9810 ltrec1d 9811 lerec2d 9812 lediv2ad 9813 ltdiv2d 9814 lediv2d 9815 ledivdivd 9816 divge0d 9831 ltmul1d 9832 ltmul2d 9833 lemul1d 9834 lemul2d 9835 ltdiv1d 9836 lediv1d 9837 ltmuldivd 9838 ltmuldiv2d 9839 lemuldivd 9840 lemuldiv2d 9841 ltdivmuld 9842 ltdivmul2d 9843 ledivmuld 9844 ledivmul2d 9845 ltdiv23d 9851 lediv23d 9852 lt2mul2divd 9859 mertenslemi1 11719 isprm6 12342 |
| Copyright terms: Public domain | W3C validator |