| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | Unicode version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpregt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. . 3
| |
| 2 | 1 | rpred 9838 |
. 2
|
| 3 | 1 | rpgt0d 9841 |
. 2
|
| 4 | 2, 3 | jca 306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-in 3176 df-ss 3183 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-rp 9796 |
| This theorem is referenced by: reclt1d 9852 recgt1d 9853 ltrecd 9857 lerecd 9858 ltrec1d 9859 lerec2d 9860 lediv2ad 9861 ltdiv2d 9862 lediv2d 9863 ledivdivd 9864 divge0d 9879 ltmul1d 9880 ltmul2d 9881 lemul1d 9882 lemul2d 9883 ltdiv1d 9884 lediv1d 9885 ltmuldivd 9886 ltmuldiv2d 9887 lemuldivd 9888 lemuldiv2d 9889 ltdivmuld 9890 ltdivmul2d 9891 ledivmuld 9892 ledivmul2d 9893 ltdiv23d 9899 lediv23d 9900 lt2mul2divd 9907 mertenslemi1 11921 isprm6 12544 |
| Copyright terms: Public domain | W3C validator |