![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9726 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 9729 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2160 class class class wbr 4018 ℝcr 7840 0cc0 7841 < clt 8022 ℝ+crp 9683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-rab 2477 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-rp 9684 |
This theorem is referenced by: reclt1d 9740 recgt1d 9741 ltrecd 9745 lerecd 9746 ltrec1d 9747 lerec2d 9748 lediv2ad 9749 ltdiv2d 9750 lediv2d 9751 ledivdivd 9752 divge0d 9767 ltmul1d 9768 ltmul2d 9769 lemul1d 9770 lemul2d 9771 ltdiv1d 9772 lediv1d 9773 ltmuldivd 9774 ltmuldiv2d 9775 lemuldivd 9776 lemuldiv2d 9777 ltdivmuld 9778 ltdivmul2d 9779 ledivmuld 9780 ledivmul2d 9781 ltdiv23d 9787 lediv23d 9788 lt2mul2divd 9795 mertenslemi1 11575 isprm6 12179 |
Copyright terms: Public domain | W3C validator |