Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9653 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 9656 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 304 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 class class class wbr 3989 ℝcr 7773 0cc0 7774 < clt 7954 ℝ+crp 9610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-rp 9611 |
This theorem is referenced by: reclt1d 9667 recgt1d 9668 ltrecd 9672 lerecd 9673 ltrec1d 9674 lerec2d 9675 lediv2ad 9676 ltdiv2d 9677 lediv2d 9678 ledivdivd 9679 divge0d 9694 ltmul1d 9695 ltmul2d 9696 lemul1d 9697 lemul2d 9698 ltdiv1d 9699 lediv1d 9700 ltmuldivd 9701 ltmuldiv2d 9702 lemuldivd 9703 lemuldiv2d 9704 ltdivmuld 9705 ltdivmul2d 9706 ledivmuld 9707 ledivmul2d 9708 ltdiv23d 9714 lediv23d 9715 lt2mul2divd 9722 mertenslemi1 11498 isprm6 12101 |
Copyright terms: Public domain | W3C validator |