| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9825 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 9828 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2177 class class class wbr 4047 ℝcr 7931 0cc0 7932 < clt 8114 ℝ+crp 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-rp 9783 |
| This theorem is referenced by: reclt1d 9839 recgt1d 9840 ltrecd 9844 lerecd 9845 ltrec1d 9846 lerec2d 9847 lediv2ad 9848 ltdiv2d 9849 lediv2d 9850 ledivdivd 9851 divge0d 9866 ltmul1d 9867 ltmul2d 9868 lemul1d 9869 lemul2d 9870 ltdiv1d 9871 lediv1d 9872 ltmuldivd 9873 ltmuldiv2d 9874 lemuldivd 9875 lemuldiv2d 9876 ltdivmuld 9877 ltdivmul2d 9878 ledivmuld 9879 ledivmul2d 9880 ltdiv23d 9886 lediv23d 9887 lt2mul2divd 9894 mertenslemi1 11890 isprm6 12513 |
| Copyright terms: Public domain | W3C validator |