ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0d GIF version

Theorem rpregt0d 9769
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpregt0d (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0d
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9762 . 2 (𝜑𝐴 ∈ ℝ)
31rpgt0d 9765 . 2 (𝜑 → 0 < 𝐴)
42, 3jca 306 1 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2164   class class class wbr 4029  cr 7871  0cc0 7872   < clt 8054  +crp 9719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-rp 9720
This theorem is referenced by:  reclt1d  9776  recgt1d  9777  ltrecd  9781  lerecd  9782  ltrec1d  9783  lerec2d  9784  lediv2ad  9785  ltdiv2d  9786  lediv2d  9787  ledivdivd  9788  divge0d  9803  ltmul1d  9804  ltmul2d  9805  lemul1d  9806  lemul2d  9807  ltdiv1d  9808  lediv1d  9809  ltmuldivd  9810  ltmuldiv2d  9811  lemuldivd  9812  lemuldiv2d  9813  ltdivmuld  9814  ltdivmul2d  9815  ledivmuld  9816  ledivmul2d  9817  ltdiv23d  9823  lediv23d  9824  lt2mul2divd  9831  mertenslemi1  11678  isprm6  12285
  Copyright terms: Public domain W3C validator