ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0d GIF version

Theorem rpregt0d 9733
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpregt0d (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0d
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9726 . 2 (𝜑𝐴 ∈ ℝ)
31rpgt0d 9729 . 2 (𝜑 → 0 < 𝐴)
42, 3jca 306 1 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2160   class class class wbr 4018  cr 7840  0cc0 7841   < clt 8022  +crp 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-br 4019  df-rp 9684
This theorem is referenced by:  reclt1d  9740  recgt1d  9741  ltrecd  9745  lerecd  9746  ltrec1d  9747  lerec2d  9748  lediv2ad  9749  ltdiv2d  9750  lediv2d  9751  ledivdivd  9752  divge0d  9767  ltmul1d  9768  ltmul2d  9769  lemul1d  9770  lemul2d  9771  ltdiv1d  9772  lediv1d  9773  ltmuldivd  9774  ltmuldiv2d  9775  lemuldivd  9776  lemuldiv2d  9777  ltdivmuld  9778  ltdivmul2d  9779  ledivmuld  9780  ledivmul2d  9781  ltdiv23d  9787  lediv23d  9788  lt2mul2divd  9795  mertenslemi1  11575  isprm6  12179
  Copyright terms: Public domain W3C validator