![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9762 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 9765 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 0cc0 7872 < clt 8054 ℝ+crp 9719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-rp 9720 |
This theorem is referenced by: reclt1d 9776 recgt1d 9777 ltrecd 9781 lerecd 9782 ltrec1d 9783 lerec2d 9784 lediv2ad 9785 ltdiv2d 9786 lediv2d 9787 ledivdivd 9788 divge0d 9803 ltmul1d 9804 ltmul2d 9805 lemul1d 9806 lemul2d 9807 ltdiv1d 9808 lediv1d 9809 ltmuldivd 9810 ltmuldiv2d 9811 lemuldivd 9812 lemuldiv2d 9813 ltdivmuld 9814 ltdivmul2d 9815 ledivmuld 9816 ledivmul2d 9817 ltdiv23d 9823 lediv23d 9824 lt2mul2divd 9831 mertenslemi1 11678 isprm6 12285 |
Copyright terms: Public domain | W3C validator |