| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9788 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 9791 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 class class class wbr 4034 ℝcr 7895 0cc0 7896 < clt 8078 ℝ+crp 9745 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9746 |
| This theorem is referenced by: reclt1d 9802 recgt1d 9803 ltrecd 9807 lerecd 9808 ltrec1d 9809 lerec2d 9810 lediv2ad 9811 ltdiv2d 9812 lediv2d 9813 ledivdivd 9814 divge0d 9829 ltmul1d 9830 ltmul2d 9831 lemul1d 9832 lemul2d 9833 ltdiv1d 9834 lediv1d 9835 ltmuldivd 9836 ltmuldiv2d 9837 lemuldivd 9838 lemuldiv2d 9839 ltdivmuld 9840 ltdivmul2d 9841 ledivmuld 9842 ledivmul2d 9843 ltdiv23d 9849 lediv23d 9850 lt2mul2divd 9857 mertenslemi1 11717 isprm6 12340 |
| Copyright terms: Public domain | W3C validator |