ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0d GIF version

Theorem rpregt0d 9907
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpregt0d (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0d
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9900 . 2 (𝜑𝐴 ∈ ℝ)
31rpgt0d 9903 . 2 (𝜑 → 0 < 𝐴)
42, 3jca 306 1 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2200   class class class wbr 4083  cr 8006  0cc0 8007   < clt 8189  +crp 9857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-rp 9858
This theorem is referenced by:  reclt1d  9914  recgt1d  9915  ltrecd  9919  lerecd  9920  ltrec1d  9921  lerec2d  9922  lediv2ad  9923  ltdiv2d  9924  lediv2d  9925  ledivdivd  9926  divge0d  9941  ltmul1d  9942  ltmul2d  9943  lemul1d  9944  lemul2d  9945  ltdiv1d  9946  lediv1d  9947  ltmuldivd  9948  ltmuldiv2d  9949  lemuldivd  9950  lemuldiv2d  9951  ltdivmuld  9952  ltdivmul2d  9953  ledivmuld  9954  ledivmul2d  9955  ltdiv23d  9961  lediv23d  9962  lt2mul2divd  9969  mertenslemi1  12054  isprm6  12677
  Copyright terms: Public domain W3C validator