ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0d GIF version

Theorem rpregt0d 9832
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpregt0d (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0d
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9825 . 2 (𝜑𝐴 ∈ ℝ)
31rpgt0d 9828 . 2 (𝜑 → 0 < 𝐴)
42, 3jca 306 1 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2177   class class class wbr 4047  cr 7931  0cc0 7932   < clt 8114  +crp 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rab 2494  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-rp 9783
This theorem is referenced by:  reclt1d  9839  recgt1d  9840  ltrecd  9844  lerecd  9845  ltrec1d  9846  lerec2d  9847  lediv2ad  9848  ltdiv2d  9849  lediv2d  9850  ledivdivd  9851  divge0d  9866  ltmul1d  9867  ltmul2d  9868  lemul1d  9869  lemul2d  9870  ltdiv1d  9871  lediv1d  9872  ltmuldivd  9873  ltmuldiv2d  9874  lemuldivd  9875  lemuldiv2d  9876  ltdivmuld  9877  ltdivmul2d  9878  ledivmuld  9879  ledivmul2d  9880  ltdiv23d  9886  lediv23d  9887  lt2mul2divd  9894  mertenslemi1  11890  isprm6  12513
  Copyright terms: Public domain W3C validator