Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version |
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
Ref | Expression |
---|---|
rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
2 | 1 | rpred 9632 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
3 | 1 | rpgt0d 9635 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
4 | 2, 3 | jca 304 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 class class class wbr 3982 ℝcr 7752 0cc0 7753 < clt 7933 ℝ+crp 9589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-rp 9590 |
This theorem is referenced by: reclt1d 9646 recgt1d 9647 ltrecd 9651 lerecd 9652 ltrec1d 9653 lerec2d 9654 lediv2ad 9655 ltdiv2d 9656 lediv2d 9657 ledivdivd 9658 divge0d 9673 ltmul1d 9674 ltmul2d 9675 lemul1d 9676 lemul2d 9677 ltdiv1d 9678 lediv1d 9679 ltmuldivd 9680 ltmuldiv2d 9681 lemuldivd 9682 lemuldiv2d 9683 ltdivmuld 9684 ltdivmul2d 9685 ledivmuld 9686 ledivmul2d 9687 ltdiv23d 9693 lediv23d 9694 lt2mul2divd 9701 mertenslemi1 11476 isprm6 12079 |
Copyright terms: Public domain | W3C validator |