| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpregt0d | GIF version | ||
| Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ+) |
| Ref | Expression |
|---|---|
| rpregt0d | ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ+) | |
| 2 | 1 | rpred 9860 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 3 | 1 | rpgt0d 9863 | . 2 ⊢ (𝜑 → 0 < 𝐴) |
| 4 | 2, 3 | jca 306 | 1 ⊢ (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2180 class class class wbr 4062 ℝcr 7966 0cc0 7967 < clt 8149 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-sn 3652 df-pr 3653 df-op 3655 df-br 4063 df-rp 9818 |
| This theorem is referenced by: reclt1d 9874 recgt1d 9875 ltrecd 9879 lerecd 9880 ltrec1d 9881 lerec2d 9882 lediv2ad 9883 ltdiv2d 9884 lediv2d 9885 ledivdivd 9886 divge0d 9901 ltmul1d 9902 ltmul2d 9903 lemul1d 9904 lemul2d 9905 ltdiv1d 9906 lediv1d 9907 ltmuldivd 9908 ltmuldiv2d 9909 lemuldivd 9910 lemuldiv2d 9911 ltdivmuld 9912 ltdivmul2d 9913 ledivmuld 9914 ledivmul2d 9915 ltdiv23d 9921 lediv23d 9922 lt2mul2divd 9929 mertenslemi1 12012 isprm6 12635 |
| Copyright terms: Public domain | W3C validator |