ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpregt0d GIF version

Theorem rpregt0d 9795
Description: A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1 (𝜑𝐴 ∈ ℝ+)
Assertion
Ref Expression
rpregt0d (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))

Proof of Theorem rpregt0d
StepHypRef Expression
1 rpred.1 . . 3 (𝜑𝐴 ∈ ℝ+)
21rpred 9788 . 2 (𝜑𝐴 ∈ ℝ)
31rpgt0d 9791 . 2 (𝜑 → 0 < 𝐴)
42, 3jca 306 1 (𝜑 → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2167   class class class wbr 4034  cr 7895  0cc0 7896   < clt 8078  +crp 9745
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-pr 3630  df-op 3632  df-br 4035  df-rp 9746
This theorem is referenced by:  reclt1d  9802  recgt1d  9803  ltrecd  9807  lerecd  9808  ltrec1d  9809  lerec2d  9810  lediv2ad  9811  ltdiv2d  9812  lediv2d  9813  ledivdivd  9814  divge0d  9829  ltmul1d  9830  ltmul2d  9831  lemul1d  9832  lemul2d  9833  ltdiv1d  9834  lediv1d  9835  ltmuldivd  9836  ltmuldiv2d  9837  lemuldivd  9838  lemuldiv2d  9839  ltdivmuld  9840  ltdivmul2d  9841  ledivmuld  9842  ledivmul2d  9843  ltdiv23d  9849  lediv23d  9850  lt2mul2divd  9857  mertenslemi1  11717  isprm6  12340
  Copyright terms: Public domain W3C validator