ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemi1 Unicode version

Theorem mertenslemi1 11527
Description: Lemma for mertensabs 11529. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertens.9  |-  ( ph  ->  E  e.  RR+ )
mertens.10  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertens.11  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
mertens.p  |-  ( ph  ->  P  e.  RR )
mertens.i12  |-  ( ph  ->  ( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) ) ) )
mertens.pge0  |-  ( ph  ->  0  <_  P )
mertens.pub  |-  ( ph  ->  A. w  e.  T  w  <_  P )
Assertion
Ref Expression
mertenslemi1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Distinct variable groups:    j, m, n, s, t, y, z, B    j, k, G, m, n, s, y, z    ph, j, k, m, y, z    t, k, A, m, n, s, y    j, E, k, m, n, s, t, y, z    j, K, k, m, n, s, t, y, z    j, F, m, n, y    ps, j, k, m, n, t, y, z    w, j, T, k, m, n, t, y, z    k, H, m, y    w, B    P, j, m, w
Allowed substitution hints:    ph( w, t, n, s)    ps( w, s)    A( z, w, j)    B( k)    P( y, z, t, k, n, s)    T( s)    E( w)    F( z, w, t, k, s)    G( w, t)    H( z, w, t, j, n, s)    K( w)

Proof of Theorem mertenslemi1
StepHypRef Expression
1 mertens.i12 . . . . . . 7  |-  ( ph  ->  ( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) ) ) )
21simpld 112 . . . . . 6  |-  ( ph  ->  ps )
3 mertens.11 . . . . . 6  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
42, 3sylib 122 . . . . 5  |-  ( ph  ->  ( s  e.  NN  /\ 
A. n  e.  (
ZZ>= `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
54simpld 112 . . . 4  |-  ( ph  ->  s  e.  NN )
65nnnn0d 9218 . . 3  |-  ( ph  ->  s  e.  NN0 )
71simprd 114 . . . 4  |-  ( ph  ->  ( t  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) ) )
87simpld 112 . . 3  |-  ( ph  ->  t  e.  NN0 )
96, 8nn0addcld 9222 . 2  |-  ( ph  ->  ( s  +  t )  e.  NN0 )
10 0zd 9254 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  0  e.  ZZ )
11 eluzelz 9526 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  (
s  +  t ) )  ->  m  e.  ZZ )
1211adantl 277 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ZZ )
1310, 12fzfigd 10417 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... m )  e. 
Fin )
14 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ph )
15 elfznn0 10100 . . . . . . . 8  |-  ( j  e.  ( 0 ... m )  ->  j  e.  NN0 )
16 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
1714, 15, 16syl2an 289 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  A  e.  CC )
18 eqid 2177 . . . . . . . 8  |-  ( ZZ>= `  ( ( m  -  j )  +  1 ) )  =  (
ZZ>= `  ( ( m  -  j )  +  1 ) )
19 fznn0sub 10043 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... m )  ->  (
m  -  j )  e.  NN0 )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  NN0 )
21 peano2nn0 9205 . . . . . . . . . 10  |-  ( ( m  -  j )  e.  NN0  ->  ( ( m  -  j )  +  1 )  e. 
NN0 )
2220, 21syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
2322nn0zd 9362 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
24 simplll 533 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
25 eluznn0 9588 . . . . . . . . . 10  |-  ( ( ( ( m  -  j )  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) )  -> 
k  e.  NN0 )
2622, 25sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
27 mertens.4 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
2824, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
29 mertens.5 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3024, 26, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
31 mertens.8 . . . . . . . . . 10  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3231ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
33 nn0uz 9551 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
34 simpll 527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ph )
3527, 29eqeltrd 2254 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3634, 35sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3733, 22, 36iserex 11331 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  ) )
3832, 37mpbid 147 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
3918, 23, 28, 30, 38isumcl 11417 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
4017, 39mulcld 7968 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  CC )
4113, 40fsumcl 11392 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  CC )
4241abscld 11174 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
4340abscld 11174 . . . . 5  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
4413, 43fsumrecl 11393 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  e.  RR )
45 mertens.9 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
4645rpred 9683 . . . . 5  |-  ( ph  ->  E  e.  RR )
4746adantr 276 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  E  e.  RR )
4813, 40fsumabs 11457 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
495nnzd 9363 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
5049adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ZZ )
5112, 50zsubcld 9369 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ZZ )
5210, 51fzfigd 10417 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  e. 
Fin )
536adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  NN0 )
5453nn0ge0d 9221 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  0  <_  s )
5512zred 9364 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  RR )
5653nn0red 9219 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  RR )
5755, 56subge02d 8484 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0  <_  s  <->  ( m  -  s )  <_  m ) )
5854, 57mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  <_  m )
5953, 33eleqtrdi 2270 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ( ZZ>= `  0 )
)
60 uzid 9531 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ZZ  ->  s  e.  ( ZZ>= `  s )
)
6149, 60syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  s  e.  ( ZZ>= `  s ) )
62 uzaddcl 9575 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  ( ZZ>= `  s )  /\  t  e.  NN0 )  ->  (
s  +  t )  e.  ( ZZ>= `  s
) )
6361, 8, 62syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( s  +  t )  e.  ( ZZ>= `  s ) )
64 eqid 2177 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  s )  =  (
ZZ>= `  s )
6564uztrn2 9534 . . . . . . . . . . . . . . . 16  |-  ( ( ( s  +  t )  e.  ( ZZ>= `  s )  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  s )
)
6663, 65sylan 283 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  s )
)
67 elfzuzb 10005 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 0 ... m )  <->  ( s  e.  ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  s ) ) )
6859, 66, 67sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ( 0 ... m
) )
69 fznn0sub2 10114 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 ... m )  ->  (
m  -  s )  e.  ( 0 ... m ) )
7068, 69syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ( 0 ... m
) )
71 elfzelz 10011 . . . . . . . . . . . . 13  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
m  -  s )  e.  ZZ )
7270, 71syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ZZ )
73 eluz 9530 . . . . . . . . . . . 12  |-  ( ( ( m  -  s
)  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  ( m  -  s ) )  <->  ( m  -  s )  <_  m ) )
7472, 12, 73syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  e.  ( ZZ>= `  ( m  -  s ) )  <-> 
( m  -  s
)  <_  m )
)
7558, 74mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  ( m  -  s ) ) )
76 fzss2 10050 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  (
m  -  s ) )  ->  ( 0 ... ( m  -  s ) )  C_  ( 0 ... m
) )
7775, 76syl 14 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  C_  ( 0 ... m
) )
7877sselda 3155 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  ( 0 ... m
) )
7916abscld 11174 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  RR )
8014, 15, 79syl2an 289 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  A )  e.  RR )
8139abscld 11174 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
8280, 81remulcld 7978 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8378, 82syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8452, 83fsumrecl 11393 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8551peano2zd 9367 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ZZ )
8685, 12fzfigd 10417 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( m  -  s
)  +  1 ) ... m )  e. 
Fin )
87 elfznn0 10100 . . . . . . . . . . . . 13  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
m  -  s )  e.  NN0 )
8870, 87syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e. 
NN0 )
89 peano2nn0 9205 . . . . . . . . . . . 12  |-  ( ( m  -  s )  e.  NN0  ->  ( ( m  -  s )  +  1 )  e. 
NN0 )
9088, 89syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e. 
NN0 )
9190, 33eleqtrdi 2270 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  0 )
)
92 fzss1 10049 . . . . . . . . . 10  |-  ( ( ( m  -  s
)  +  1 )  e.  ( ZZ>= `  0
)  ->  ( (
( m  -  s
)  +  1 ) ... m )  C_  ( 0 ... m
) )
9391, 92syl 14 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( m  -  s
)  +  1 ) ... m )  C_  ( 0 ... m
) )
9493sselda 3155 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  ( 0 ... m
) )
9594, 82syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
9686, 95fsumrecl 11393 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
9745rphalfcld 9696 . . . . . . . 8  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
9897rpred 9683 . . . . . . 7  |-  ( ph  ->  ( E  /  2
)  e.  RR )
9998adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( E  /  2 )  e.  RR )
100 elfznn0 10100 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  e.  NN0 )
10114, 100, 79syl2an 289 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  A )  e.  RR )
10252, 101fsumrecl 11393 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  e.  RR )
103102, 99remulcld 7978 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  e.  RR )
104 0zd 9254 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
105 eqidd 2178 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( K `  j ) )
106 mertens.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
107106, 79eqeltrd 2254 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  e.  RR )
108 mertens.7 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
10933, 104, 105, 107, 108isumrecl 11421 . . . . . . . . . 10  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  e.  RR )
11016absge0d 11177 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( abs `  A ) )
111110, 106breqtrrd 4028 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( K `  j ) )
11233, 104, 105, 107, 108, 111isumge0 11422 . . . . . . . . . 10  |-  ( ph  ->  0  <_  sum_ j  e. 
NN0  ( K `  j ) )
113109, 112ge0p1rpd 9714 . . . . . . . . 9  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR+ )
114113adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR+ )
115103, 114rerpdivcld 9715 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR )
11697, 113rpdivcld 9701 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR+ )
117116rpred 9683 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR )
118117ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  e.  RR )
119101, 118remulcld 7978 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  e.  RR )
12078, 23syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
121 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
12278, 22syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
123122, 25sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
124121, 123, 27syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
125121, 123, 29syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
12678, 38syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
12718, 120, 124, 125, 126isumcl 11417 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
128127abscld 11174 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
12979, 110jca 306 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A )  e.  RR  /\  0  <_ 
( abs `  A
) ) )
13014, 100, 129syl2an 289 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
131124sumeq2dv 11360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
132131fveq2d 5515 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
133 fvoveq1 5892 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  -  j )  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) )
134133sumeq1d 11358 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  -  j )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) )
135134fveq2d 5515 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  j )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) ) )
136135breq1d 4010 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  j )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
1374simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  (
ZZ>= `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )
138137ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
139 elfzelz 10011 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  e.  ZZ )
140139adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  ZZ )
141140zred 9364 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  RR )
14211ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  m  e.  ZZ )
143142zred 9364 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  m  e.  RR )
14449ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  e.  ZZ )
145144zred 9364 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  e.  RR )
146 elfzle2 10014 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  <_  ( m  -  s
) )
147146adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  <_  ( m  -  s
) )
148141, 143, 145, 147lesubd 8496 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  <_  ( m  -  j
) )
149142, 140zsubcld 9369 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
m  -  j )  e.  ZZ )
150 eluz 9530 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  ZZ  /\  ( m  -  j
)  e.  ZZ )  ->  ( ( m  -  j )  e.  ( ZZ>= `  s )  <->  s  <_  ( m  -  j ) ) )
151144, 149, 150syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  e.  ( ZZ>= `  s )  <->  s  <_  ( m  -  j ) ) )
152148, 151mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
m  -  j )  e.  ( ZZ>= `  s
) )
153136, 138, 152rspcdva 2846 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
154132, 153eqbrtrrd 4024 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
155128, 118, 154ltled 8066 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
156 lemul2a 8805 . . . . . . . . . 10  |-  ( ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR  /\  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  e.  RR  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A
) ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  <_  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )  ->  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
157128, 118, 130, 155, 156syl31anc 1241 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
15852, 83, 119, 157fsumle 11455 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
159102recnd 7976 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  e.  CC )
16097rpcnd 9685 . . . . . . . . . . 11  |-  ( ph  ->  ( E  /  2
)  e.  CC )
161160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( E  /  2 )  e.  CC )
162 peano2re 8083 . . . . . . . . . . . . 13  |-  ( sum_ j  e.  NN0  ( K `
 j )  e.  RR  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR )
163109, 162syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR )
164163recnd 7976 . . . . . . . . . . 11  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  CC )
165164adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  CC )
166114rpap0d 9689 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) #  0 )
167159, 161, 165, 166divassapd 8772 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  =  ( sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
168 fveq2 5511 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  ( K `  n )  =  ( K `  j ) )
169168cbvsumv 11353 . . . . . . . . . . . . . . . 16  |-  sum_ n  e.  NN0  ( K `  n )  =  sum_ j  e.  NN0  ( K `
 j )
170169oveq1i 5879 . . . . . . . . . . . . . . 15  |-  ( sum_ n  e.  NN0  ( K `  n )  +  1 )  =  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )
171170oveq2i 5880 . . . . . . . . . . . . . 14  |-  ( ( E  /  2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  =  ( ( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
172171, 116eqeltrid 2264 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  RR+ )
173172rpcnd 9685 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  CC )
174173adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  CC )
17579recnd 7976 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  CC )
17614, 100, 175syl2an 289 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  A )  e.  CC )
17752, 174, 176fsummulc1 11441 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) ) )
178171oveq2i 5880 . . . . . . . . . 10  |-  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
179171oveq2i 5880 . . . . . . . . . . . 12  |-  ( ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
180179a1i 9 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
181180sumeq2i 11356 . . . . . . . . . 10  |-  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  = 
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
182177, 178, 1813eqtr3g 2233 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  =  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
183167, 182eqtrd 2210 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  =  sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
184158, 183breqtrrd 4028 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
185109adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  e.  RR )
186163adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR )
187 fz0ssnn0 10102 . . . . . . . . . . . . 13  |-  ( 0 ... ( m  -  s ) )  C_  NN0
188187a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  C_  NN0 )
189106adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  ( K `  j )  =  ( abs `  A
) )
190 nn0z 9262 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  ZZ )
191190adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  j  e.  ZZ )
192 0zd 9254 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  0  e.  ZZ )
19351adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  (
m  -  s )  e.  ZZ )
194 fzdcel 10026 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  (
m  -  s )  e.  ZZ )  -> DECID  j  e.  ( 0 ... (
m  -  s ) ) )
195191, 192, 193, 194syl3anc 1238 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  -> DECID  j  e.  (
0 ... ( m  -  s ) ) )
196195ralrimiva 2550 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  A. j  e.  NN0 DECID  j  e.  ( 0 ... ( m  -  s ) ) )
19779adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  ( abs `  A )  e.  RR )
198110adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  0  <_  ( abs `  A
) )
199108adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  seq 0
(  +  ,  K
)  e.  dom  ~~>  )
20033, 10, 52, 188, 189, 196, 197, 198, 199isumlessdc 11488 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <_  sum_ j  e. 
NN0  ( abs `  A
) )
201106sumeq2dv 11360 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  =  sum_ j  e.  NN0  ( abs `  A ) )
202201adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  =  sum_ j  e.  NN0  ( abs `  A ) )
203200, 202breqtrrd 4028 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <_  sum_ j  e. 
NN0  ( K `  j ) )
204109ltp1d 8876 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )
205204adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )
206102, 185, 186, 203, 205lelttrd 8072 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
20797rpregt0d 9690 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E  / 
2 )  e.  RR  /\  0  <  ( E  /  2 ) ) )
208207adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  e.  RR  /\  0  < 
( E  /  2
) ) )
209 ltmul1 8539 . . . . . . . . . 10  |-  ( (
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  e.  RR  /\  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  ( ( E  /  2 )  e.  RR  /\  0  <  ( E  /  2
) ) )  -> 
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  <  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
210102, 186, 208, 209syl3anc 1238 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  <->  ( sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  <  ( ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  x.  ( E  /  2 ) ) ) )
211206, 210mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) )
212113rpregt0d 9690 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
213212adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  < 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
214 ltdivmul 8822 . . . . . . . . 9  |-  ( ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  e.  RR  /\  ( E  /  2 )  e.  RR  /\  ( (
sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  < 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  ->  ( (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  /  2 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
215103, 99, 213, 214syl3anc 1238 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  /  2 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
216211, 215mpbird 167 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  / 
2 ) )
21784, 115, 99, 184, 216lelttrd 8072 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  ( E  /  2 ) )
218 mertens.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  RR )
21998, 218remulcld 7978 . . . . . . . . 9  |-  ( ph  ->  ( ( E  / 
2 )  x.  P
)  e.  RR )
220 mertens.pge0 . . . . . . . . . 10  |-  ( ph  ->  0  <_  P )
221218, 220ge0p1rpd 9714 . . . . . . . . 9  |-  ( ph  ->  ( P  +  1 )  e.  RR+ )
222219, 221rerpdivcld 9715 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  e.  RR )
223222adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( E  /  2
)  x.  P )  /  ( P  + 
1 ) )  e.  RR )
2245nnrpd 9681 . . . . . . . . . . . . . 14  |-  ( ph  ->  s  e.  RR+ )
22597, 224rpdivcld 9701 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E  / 
2 )  /  s
)  e.  RR+ )
226225, 221rpdivcld 9701 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR+ )
227226rpred 9683 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR )
228227, 218remulcld 7978 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  RR )
229228ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P )  e.  RR )
230 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ph )
23194, 15syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  NN0 )
232230, 231, 79syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  e.  RR )
233227ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  e.  RR )
234230, 231, 106syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( K `  j )  =  ( abs `  A
) )
235 fveq2 5511 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  ( K `  m )  =  ( K `  j ) )
236235breq1d 4010 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  (
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) )  <->  ( K `  j )  <  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) ) ) )
2377simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) )
238237ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) ) )
239 elfzuz 10007 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( ( m  -  s )  +  1 ) ... m )  ->  j  e.  ( ZZ>= `  ( (
m  -  s )  +  1 ) ) )
240 eluzle 9529 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  (
s  +  t ) )  ->  ( s  +  t )  <_  m )
241240adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  +  t )  <_  m )
2428nn0zd 9362 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  t  e.  ZZ )
243242adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  e.  ZZ )
244243zred 9364 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  e.  RR )
24556, 244, 55leaddsub2d 8494 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
s  +  t )  <_  m  <->  t  <_  ( m  -  s ) ) )
246241, 245mpbid 147 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  <_  ( m  -  s ) )
247 eluz 9530 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  ZZ  /\  ( m  -  s
)  e.  ZZ )  ->  ( ( m  -  s )  e.  ( ZZ>= `  t )  <->  t  <_  ( m  -  s ) ) )
248243, 72, 247syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  e.  ( ZZ>= `  t
)  <->  t  <_  (
m  -  s ) ) )
249246, 248mpbird 167 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ( ZZ>= `  t )
)
250 peano2uz 9572 . . . . . . . . . . . . . . 15  |-  ( ( m  -  s )  e.  ( ZZ>= `  t
)  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  t )
)
251249, 250syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  t )
)
252 uztrn 9533 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( ZZ>= `  ( ( m  -  s )  +  1 ) )  /\  (
( m  -  s
)  +  1 )  e.  ( ZZ>= `  t
) )  ->  j  e.  ( ZZ>= `  t )
)
253239, 251, 252syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  ( ZZ>= `  t )
)
254236, 238, 253rspcdva 2846 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( K `  j )  <  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
255234, 254eqbrtrrd 4024 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
256232, 233, 255ltled 8066 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  <_ 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
257 breq1 4003 . . . . . . . . . . 11  |-  ( w  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( w  <_  P 
<->  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P ) )
258 mertens.pub . . . . . . . . . . . 12  |-  ( ph  ->  A. w  e.  T  w  <_  P )
259258ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  A. w  e.  T  w  <_  P )
26055adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  m  e.  RR )
261 peano2zm 9280 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ZZ  ->  (
s  -  1 )  e.  ZZ )
26249, 261syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( s  -  1 )  e.  ZZ )
263262zred 9364 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( s  -  1 )  e.  RR )
264263ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
s  -  1 )  e.  RR )
265231nn0red 9219 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  RR )
26612zcnd 9365 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  CC )
26756recnd 7976 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  CC )
268 1cnd 7964 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  1  e.  CC )
269266, 267, 268subsubd 8286 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  ( s  - 
1 ) )  =  ( ( m  -  s )  +  1 ) )
270269adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  ( s  -  1 ) )  =  ( ( m  -  s )  +  1 ) )
271 elfzle1 10013 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ( ( m  -  s )  +  1 ) ... m )  ->  (
( m  -  s
)  +  1 )  <_  j )
272271adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  s
)  +  1 )  <_  j )
273270, 272eqbrtrd 4022 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  ( s  -  1 ) )  <_  j )
274260, 264, 265, 273subled 8495 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  <_  ( s  - 
1 ) )
27594, 19syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  NN0 )
276275, 33eleqtrdi 2270 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  ( ZZ>= `  0
) )
277262ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
s  -  1 )  e.  ZZ )
278 elfz5 10003 . . . . . . . . . . . . . . 15  |-  ( ( ( m  -  j
)  e.  ( ZZ>= ` 
0 )  /\  (
s  -  1 )  e.  ZZ )  -> 
( ( m  -  j )  e.  ( 0 ... ( s  -  1 ) )  <-> 
( m  -  j
)  <_  ( s  -  1 ) ) )
279276, 277, 278syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  j
)  e.  ( 0 ... ( s  - 
1 ) )  <->  ( m  -  j )  <_ 
( s  -  1 ) ) )
280274, 279mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  ( 0 ... ( s  -  1 ) ) )
281 simplll 533 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
28294, 22syldan 282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
283282, 25sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
284281, 283, 27syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
285284sumeq2dv 11360 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
286285eqcomd 2183 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) )
287286fveq2d 5515 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) ) )
288135rspceeqv 2859 . . . . . . . . . . . . 13  |-  ( ( ( m  -  j
)  e.  ( 0 ... ( s  - 
1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) ) )  ->  E. n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
289280, 287, 288syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
29094, 39syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
291290abscld 11174 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
292 eqeq1 2184 . . . . . . . . . . . . . . 15  |-  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
293292rexbidv 2478 . . . . . . . . . . . . . 14  |-  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
294 mertens.10 . . . . . . . . . . . . . 14  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
295293, 294elab2g 2884 . . . . . . . . . . . . 13  |-  ( ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  RR  ->  ( ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
296291, 295syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
297289, 296mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T )
298257, 259, 297rspcdva 2846 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P )
299230, 231, 129syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
30094, 81syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
30139absge0d 11177 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
30294, 301syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
303300, 302jca 306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR  /\  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
304218ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  P  e.  RR )
305 lemul12a 8808 . . . . . . . . . . 11  |-  ( ( ( ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) )  /\  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR )  /\  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  RR  /\  0  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  /\  P  e.  RR ) )  -> 
( ( ( abs `  A )  <_  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P )  -> 
( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) ) )
306299, 233, 303, 304, 305syl22anc 1239 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( abs `  A
)  <_  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  <_  P
)  ->  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  ( (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  x.  P ) ) )
307256, 298, 306mp2and 433 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )
30886, 95, 229, 307fsumle 11455 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) )
309228recnd 7976 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  CC )
310309adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  x.  P )  e.  CC )
311 fsumconst 11446 . . . . . . . . . 10  |-  ( ( ( ( ( m  -  s )  +  1 ) ... m
)  e.  Fin  /\  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  CC )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m ) ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  =  ( ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) ) )
31286, 310, 311syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P )  =  ( ( `  ( (
( m  -  s
)  +  1 ) ... m ) )  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
313 1zzd 9269 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  1  e.  ZZ )
314 fzen 10029 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  (
m  -  s )  e.  ZZ )  -> 
( 1 ... s
)  ~~  ( (
1  +  ( m  -  s ) ) ... ( s  +  ( m  -  s
) ) ) )
315313, 50, 72, 314syl3anc 1238 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  ~~  ( ( 1  +  ( m  -  s
) ) ... (
s  +  ( m  -  s ) ) ) )
316 ax-1cn 7895 . . . . . . . . . . . . . . 15  |-  1  e.  CC
31772zcnd 9365 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  CC )
318 addcom 8084 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( m  -  s
)  e.  CC )  ->  ( 1  +  ( m  -  s
) )  =  ( ( m  -  s
)  +  1 ) )
319316, 317, 318sylancr 414 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1  +  ( m  -  s ) )  =  ( ( m  -  s )  +  1 ) )
320267, 266pncan3d 8261 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  +  ( m  -  s ) )  =  m )
321319, 320oveq12d 5887 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
1  +  ( m  -  s ) ) ... ( s  +  ( m  -  s
) ) )  =  ( ( ( m  -  s )  +  1 ) ... m
) )
322315, 321breqtrd 4026 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  ~~  ( ( ( m  -  s )  +  1 ) ... m
) )
323313, 50fzfigd 10417 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  e. 
Fin )
324 hashen 10748 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... s
)  e.  Fin  /\  ( ( ( m  -  s )  +  1 ) ... m
)  e.  Fin )  ->  ( ( `  (
1 ... s ) )  =  ( `  (
( ( m  -  s )  +  1 ) ... m ) )  <->  ( 1 ... s )  ~~  (
( ( m  -  s )  +  1 ) ... m ) ) )
325323, 86, 324syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( `  ( 1 ... s
) )  =  ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  <->  ( 1 ... s )  ~~  ( ( ( m  -  s )  +  1 ) ... m
) ) )
326322, 325mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
1 ... s ) )  =  ( `  (
( ( m  -  s )  +  1 ) ... m ) ) )
327 hashfz1 10747 . . . . . . . . . . . 12  |-  ( s  e.  NN0  ->  ( `  (
1 ... s ) )  =  s )
32853, 327syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
1 ... s ) )  =  s )
329326, 328eqtr3d 2212 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
( ( m  -  s )  +  1 ) ... m ) )  =  s )
330329oveq1d 5884 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )  =  ( s  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
331218recnd 7976 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
332221rpcnd 9685 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  +  1 )  e.  CC )
333221rpap0d 9689 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  +  1 ) #  0 )
334160, 331, 332, 333div23apd 8774 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  =  ( ( ( E  /  2
)  /  ( P  +  1 ) )  x.  P ) )
33549zcnd 9365 . . . . . . . . . . . . . 14  |-  ( ph  ->  s  e.  CC )
336225rpcnd 9685 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E  / 
2 )  /  s
)  e.  CC )
337335, 336, 332, 333divassapd 8772 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( s  x.  ( ( E  / 
2 )  /  s
) )  /  ( P  +  1 ) )  =  ( s  x.  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) ) )
3385nnap0d 8954 . . . . . . . . . . . . . . 15  |-  ( ph  ->  s #  0 )
339160, 335, 338divcanap2d 8738 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  x.  (
( E  /  2
)  /  s ) )  =  ( E  /  2 ) )
340339oveq1d 5884 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( s  x.  ( ( E  / 
2 )  /  s
) )  /  ( P  +  1 ) )  =  ( ( E  /  2 )  /  ( P  + 
1 ) ) )
341337, 340eqtr3d 2212 . . . . . . . . . . . 12  |-  ( ph  ->  ( s  x.  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) ) )  =  ( ( E  /  2 )  /  ( P  + 
1 ) ) )
342341oveq1d 5884 . . . . . . . . . . 11  |-  ( ph  ->  ( ( s  x.  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )  x.  P
)  =  ( ( ( E  /  2
)  /  ( P  +  1 ) )  x.  P ) )
343226rpcnd 9685 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  CC )
344335, 343, 331mulassd 7971 . . . . . . . . . . 11  |-  ( ph  ->  ( ( s  x.  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )  x.  P
)  =  ( s  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
345334, 342, 3443eqtr2rd 2217 . . . . . . . . . 10  |-  ( ph  ->  ( s  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )  =  ( ( ( E  /  2
)  x.  P )  /  ( P  + 
1 ) ) )
346345adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  x.  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
) )  =  ( ( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
347312, 330, 3463eqtrd 2214 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P )  =  ( ( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
348308, 347breqtrd 4026 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
349 peano2re 8083 . . . . . . . . . . 11  |-  ( P  e.  RR  ->  ( P  +  1 )  e.  RR )
350218, 349syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  RR )
351218ltp1d 8876 . . . . . . . . . 10  |-  ( ph  ->  P  <  ( P  +  1 ) )
352218, 350, 97, 351ltmul2dd 9740 . . . . . . . . 9  |-  ( ph  ->  ( ( E  / 
2 )  x.  P
)  <  ( ( E  /  2 )  x.  ( P  +  1 ) ) )
353219, 98, 221ltdivmul2d 9736 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( E  /  2 )  x.  P )  / 
( P  +  1 ) )  <  ( E  /  2 )  <->  ( ( E  /  2 )  x.  P )  <  (
( E  /  2
)  x.  ( P  +  1 ) ) ) )
354352, 353mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  <  ( E  /  2 ) )
355354adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( E  /  2
)  x.  P )  /  ( P  + 
1 ) )  < 
( E  /  2
) )
35696, 223, 99, 348, 355lelttrd 8072 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  ( E  /  2 ) )
35784, 96, 99, 99, 217, 356lt2addd 8514 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )  < 
( ( E  / 
2 )  +  ( E  /  2 ) ) )
35817, 39absmuld 11187 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  =  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
359358sumeq2dv 11360 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  = 
sum_ j  e.  ( 0 ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
36072zred 9364 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  RR )
361360ltp1d 8876 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  < 
( ( m  -  s )  +  1 ) )
362 fzdisj 10038 . . . . . . . 8  |-  ( ( m  -  s )  <  ( ( m  -  s )  +  1 )  ->  (
( 0 ... (
m  -  s ) )  i^i  ( ( ( m  -  s
)  +  1 ) ... m ) )  =  (/) )
363361, 362syl 14 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
0 ... ( m  -  s ) )  i^i  ( ( ( m  -  s )  +  1 ) ... m
) )  =  (/) )
364 fzsplit 10037 . . . . . . . 8  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
0 ... m )  =  ( ( 0 ... ( m  -  s
) )  u.  (
( ( m  -  s )  +  1 ) ... m ) ) )
36570, 364syl 14 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... m )  =  ( ( 0 ... ( m  -  s
) )  u.  (
( ( m  -  s )  +  1 ) ... m ) ) )
36682recnd 7976 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  CC )
367363, 365, 13, 366fsumsplit 11399 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  =  (
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) ) )
368359, 367eqtr2d 2211 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )  = 
sum_ j  e.  ( 0 ... m ) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
36945rpcnd 9685 . . . . . . 7  |-  ( ph  ->  E  e.  CC )
370369adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  E  e.  CC )
3713702halvesd 9153 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  +  ( E  /  2
) )  =  E )
372357, 368, 3713brtr3d 4031 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E )
37342, 44, 47, 48, 372lelttrd 8072 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
374373ralrimiva 2550 . 2  |-  ( ph  ->  A. m  e.  (
ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
375 fveq2 5511 . . . 4  |-  ( y  =  ( s  +  t )  ->  ( ZZ>=
`  y )  =  ( ZZ>= `  ( s  +  t ) ) )
376375raleqdv 2678 . . 3  |-  ( y  =  ( s  +  t )  ->  ( A. m  e.  ( ZZ>=
`  y ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E  <->  A. m  e.  ( ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
377376rspcev 2841 . 2  |-  ( ( ( s  +  t )  e.  NN0  /\  A. m  e.  ( ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
3789, 374, 377syl2anc 411 1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   E.wrex 2456    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   class class class wbr 4000   dom cdm 4623   ` cfv 5212  (class class class)co 5869    ~~ cen 6732   Fincfn 6734   CCcc 7800   RRcr 7801   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807    < clt 7982    <_ cle 7983    - cmin 8118    / cdiv 8618   NNcn 8908   2c2 8959   NN0cn0 9165   ZZcz 9242   ZZ>=cuz 9517   RR+crp 9640   ...cfz 9995    seqcseq 10431  ♯chash 10739   abscabs 10990    ~~> cli 11270   sum_csu 11345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-ico 9881  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346
This theorem is referenced by:  mertenslem2  11528
  Copyright terms: Public domain W3C validator