ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mertenslemi1 Unicode version

Theorem mertenslemi1 11700
Description: Lemma for mertensabs 11702. (Contributed by Mario Carneiro, 29-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
Hypotheses
Ref Expression
mertens.1  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( F `  j )  =  A )
mertens.2  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
mertens.3  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
mertens.4  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
mertens.5  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
mertens.6  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( H `  k )  =  sum_ j  e.  ( 0 ... k ) ( A  x.  ( G `
 ( k  -  j ) ) ) )
mertens.7  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
mertens.8  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
mertens.9  |-  ( ph  ->  E  e.  RR+ )
mertens.10  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
mertens.11  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
mertens.p  |-  ( ph  ->  P  e.  RR )
mertens.i12  |-  ( ph  ->  ( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) ) ) )
mertens.pge0  |-  ( ph  ->  0  <_  P )
mertens.pub  |-  ( ph  ->  A. w  e.  T  w  <_  P )
Assertion
Ref Expression
mertenslemi1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Distinct variable groups:    j, m, n, s, t, y, z, B    j, k, G, m, n, s, y, z    ph, j, k, m, y, z    t, k, A, m, n, s, y    j, E, k, m, n, s, t, y, z    j, K, k, m, n, s, t, y, z    j, F, m, n, y    ps, j, k, m, n, t, y, z    w, j, T, k, m, n, t, y, z    k, H, m, y    w, B    P, j, m, w
Allowed substitution hints:    ph( w, t, n, s)    ps( w, s)    A( z, w, j)    B( k)    P( y, z, t, k, n, s)    T( s)    E( w)    F( z, w, t, k, s)    G( w, t)    H( z, w, t, j, n, s)    K( w)

Proof of Theorem mertenslemi1
StepHypRef Expression
1 mertens.i12 . . . . . . 7  |-  ( ph  ->  ( ps  /\  (
t  e.  NN0  /\  A. m  e.  ( ZZ>= `  t ) ( K `
 m )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) ) ) )
21simpld 112 . . . . . 6  |-  ( ph  ->  ps )
3 mertens.11 . . . . . 6  |-  ( ps  <->  ( s  e.  NN  /\  A. n  e.  ( ZZ>= `  s ) ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
42, 3sylib 122 . . . . 5  |-  ( ph  ->  ( s  e.  NN  /\ 
A. n  e.  (
ZZ>= `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
54simpld 112 . . . 4  |-  ( ph  ->  s  e.  NN )
65nnnn0d 9302 . . 3  |-  ( ph  ->  s  e.  NN0 )
71simprd 114 . . . 4  |-  ( ph  ->  ( t  e.  NN0  /\ 
A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) ) )
87simpld 112 . . 3  |-  ( ph  ->  t  e.  NN0 )
96, 8nn0addcld 9306 . 2  |-  ( ph  ->  ( s  +  t )  e.  NN0 )
10 0zd 9338 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  0  e.  ZZ )
11 eluzelz 9610 . . . . . . . 8  |-  ( m  e.  ( ZZ>= `  (
s  +  t ) )  ->  m  e.  ZZ )
1211adantl 277 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ZZ )
1310, 12fzfigd 10523 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... m )  e. 
Fin )
14 simpl 109 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ph )
15 elfznn0 10189 . . . . . . . 8  |-  ( j  e.  ( 0 ... m )  ->  j  e.  NN0 )
16 mertens.3 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN0 )  ->  A  e.  CC )
1714, 15, 16syl2an 289 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  A  e.  CC )
18 eqid 2196 . . . . . . . 8  |-  ( ZZ>= `  ( ( m  -  j )  +  1 ) )  =  (
ZZ>= `  ( ( m  -  j )  +  1 ) )
19 fznn0sub 10132 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... m )  ->  (
m  -  j )  e.  NN0 )
2019adantl 277 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
m  -  j )  e.  NN0 )
21 peano2nn0 9289 . . . . . . . . . 10  |-  ( ( m  -  j )  e.  NN0  ->  ( ( m  -  j )  +  1 )  e. 
NN0 )
2220, 21syl 14 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
2322nn0zd 9446 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
24 simplll 533 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
25 eluznn0 9673 . . . . . . . . . 10  |-  ( ( ( ( m  -  j )  +  1 )  e.  NN0  /\  k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) )  -> 
k  e.  NN0 )
2622, 25sylan 283 . . . . . . . . 9  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
27 mertens.4 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  =  B )
2824, 26, 27syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
29 mertens.5 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN0 )  ->  B  e.  CC )
3024, 26, 29syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
31 mertens.8 . . . . . . . . . 10  |-  ( ph  ->  seq 0 (  +  ,  G )  e. 
dom 
~~>  )
3231ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  seq 0 (  +  ,  G )  e.  dom  ~~>  )
33 nn0uz 9636 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
34 simpll 527 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ph )
3527, 29eqeltrd 2273 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3634, 35sylan 283 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m ) )  /\  k  e.  NN0 )  ->  ( G `  k )  e.  CC )
3733, 22, 36iserex 11504 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (  seq 0 (  +  ,  G )  e.  dom  ~~>  <->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  ) )
3832, 37mpbid 147 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
3918, 23, 28, 30, 38isumcl 11590 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
4017, 39mulcld 8047 . . . . . 6  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  CC )
4113, 40fsumcl 11565 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  CC )
4241abscld 11346 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
4340abscld 11346 . . . . 5  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
4413, 43fsumrecl 11566 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  e.  RR )
45 mertens.9 . . . . . 6  |-  ( ph  ->  E  e.  RR+ )
4645rpred 9771 . . . . 5  |-  ( ph  ->  E  e.  RR )
4746adantr 276 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  E  e.  RR )
4813, 40fsumabs 11630 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
495nnzd 9447 . . . . . . . . . 10  |-  ( ph  ->  s  e.  ZZ )
5049adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ZZ )
5112, 50zsubcld 9453 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ZZ )
5210, 51fzfigd 10523 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  e. 
Fin )
536adantr 276 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  NN0 )
5453nn0ge0d 9305 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  0  <_  s )
5512zred 9448 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  RR )
5653nn0red 9303 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  RR )
5755, 56subge02d 8564 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0  <_  s  <->  ( m  -  s )  <_  m ) )
5854, 57mpbid 147 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  <_  m )
5953, 33eleqtrdi 2289 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ( ZZ>= `  0 )
)
60 uzid 9615 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ZZ  ->  s  e.  ( ZZ>= `  s )
)
6149, 60syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  s  e.  ( ZZ>= `  s ) )
62 uzaddcl 9660 . . . . . . . . . . . . . . . . 17  |-  ( ( s  e.  ( ZZ>= `  s )  /\  t  e.  NN0 )  ->  (
s  +  t )  e.  ( ZZ>= `  s
) )
6361, 8, 62syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( s  +  t )  e.  ( ZZ>= `  s ) )
64 eqid 2196 . . . . . . . . . . . . . . . . 17  |-  ( ZZ>= `  s )  =  (
ZZ>= `  s )
6564uztrn2 9619 . . . . . . . . . . . . . . . 16  |-  ( ( ( s  +  t )  e.  ( ZZ>= `  s )  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  s )
)
6663, 65sylan 283 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  s )
)
67 elfzuzb 10094 . . . . . . . . . . . . . . 15  |-  ( s  e.  ( 0 ... m )  <->  ( s  e.  ( ZZ>= `  0 )  /\  m  e.  ( ZZ>=
`  s ) ) )
6859, 66, 67sylanbrc 417 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  ( 0 ... m
) )
69 fznn0sub2 10203 . . . . . . . . . . . . . 14  |-  ( s  e.  ( 0 ... m )  ->  (
m  -  s )  e.  ( 0 ... m ) )
7068, 69syl 14 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ( 0 ... m
) )
71 elfzelz 10100 . . . . . . . . . . . . 13  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
m  -  s )  e.  ZZ )
7270, 71syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ZZ )
73 eluz 9614 . . . . . . . . . . . 12  |-  ( ( ( m  -  s
)  e.  ZZ  /\  m  e.  ZZ )  ->  ( m  e.  (
ZZ>= `  ( m  -  s ) )  <->  ( m  -  s )  <_  m ) )
7472, 12, 73syl2anc 411 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  e.  ( ZZ>= `  ( m  -  s ) )  <-> 
( m  -  s
)  <_  m )
)
7558, 74mpbird 167 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  ( ZZ>= `  ( m  -  s ) ) )
76 fzss2 10139 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  (
m  -  s ) )  ->  ( 0 ... ( m  -  s ) )  C_  ( 0 ... m
) )
7775, 76syl 14 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  C_  ( 0 ... m
) )
7877sselda 3183 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  ( 0 ... m
) )
7916abscld 11346 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  RR )
8014, 15, 79syl2an 289 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  A )  e.  RR )
8139abscld 11346 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
8280, 81remulcld 8057 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8378, 82syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8452, 83fsumrecl 11566 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
8551peano2zd 9451 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ZZ )
8685, 12fzfigd 10523 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( m  -  s
)  +  1 ) ... m )  e. 
Fin )
87 elfznn0 10189 . . . . . . . . . . . . 13  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
m  -  s )  e.  NN0 )
8870, 87syl 14 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e. 
NN0 )
89 peano2nn0 9289 . . . . . . . . . . . 12  |-  ( ( m  -  s )  e.  NN0  ->  ( ( m  -  s )  +  1 )  e. 
NN0 )
9088, 89syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e. 
NN0 )
9190, 33eleqtrdi 2289 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  0 )
)
92 fzss1 10138 . . . . . . . . . 10  |-  ( ( ( m  -  s
)  +  1 )  e.  ( ZZ>= `  0
)  ->  ( (
( m  -  s
)  +  1 ) ... m )  C_  ( 0 ... m
) )
9391, 92syl 14 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( m  -  s
)  +  1 ) ... m )  C_  ( 0 ... m
) )
9493sselda 3183 . . . . . . . 8  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  ( 0 ... m
) )
9594, 82syldan 282 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
9686, 95fsumrecl 11566 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  RR )
9745rphalfcld 9784 . . . . . . . 8  |-  ( ph  ->  ( E  /  2
)  e.  RR+ )
9897rpred 9771 . . . . . . 7  |-  ( ph  ->  ( E  /  2
)  e.  RR )
9998adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( E  /  2 )  e.  RR )
100 elfznn0 10189 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  e.  NN0 )
10114, 100, 79syl2an 289 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  A )  e.  RR )
10252, 101fsumrecl 11566 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  e.  RR )
103102, 99remulcld 8057 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  e.  RR )
104 0zd 9338 . . . . . . . . . . 11  |-  ( ph  ->  0  e.  ZZ )
105 eqidd 2197 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( K `  j ) )
106 mertens.2 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  =  ( abs `  A ) )
107106, 79eqeltrd 2273 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( K `  j )  e.  RR )
108 mertens.7 . . . . . . . . . . 11  |-  ( ph  ->  seq 0 (  +  ,  K )  e. 
dom 
~~>  )
10933, 104, 105, 107, 108isumrecl 11594 . . . . . . . . . 10  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  e.  RR )
11016absge0d 11349 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( abs `  A ) )
111110, 106breqtrrd 4061 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  0  <_  ( K `  j ) )
11233, 104, 105, 107, 108, 111isumge0 11595 . . . . . . . . . 10  |-  ( ph  ->  0  <_  sum_ j  e. 
NN0  ( K `  j ) )
113109, 112ge0p1rpd 9802 . . . . . . . . 9  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR+ )
114113adantr 276 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR+ )
115103, 114rerpdivcld 9803 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR )
11697, 113rpdivcld 9789 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR+ )
117116rpred 9771 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  e.  RR )
118117ad2antrr 488 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  e.  RR )
119101, 118remulcld 8057 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  e.  RR )
12078, 23syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  +  1 )  e.  ZZ )
121 simplll 533 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
12278, 22syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
123122, 25sylan 283 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
124121, 123, 27syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
125121, 123, 29syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... ( m  -  s ) ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  B  e.  CC )
12678, 38syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  seq ( ( m  -  j )  +  1 ) (  +  ,  G )  e.  dom  ~~>  )
12718, 120, 124, 125, 126isumcl 11590 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
128127abscld 11346 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
12979, 110jca 306 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( ( abs `  A )  e.  RR  /\  0  <_ 
( abs `  A
) ) )
13014, 100, 129syl2an 289 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
131124sumeq2dv 11533 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
132131fveq2d 5562 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
133 fvoveq1 5945 . . . . . . . . . . . . . . . 16  |-  ( n  =  ( m  -  j )  ->  ( ZZ>=
`  ( n  + 
1 ) )  =  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) )
134133sumeq1d 11531 . . . . . . . . . . . . . . 15  |-  ( n  =  ( m  -  j )  ->  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) )
135134fveq2d 5562 . . . . . . . . . . . . . 14  |-  ( n  =  ( m  -  j )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( n  + 
1 ) ) ( G `  k ) )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) ) )
136135breq1d 4043 . . . . . . . . . . . . 13  |-  ( n  =  ( m  -  j )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
1374simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. n  e.  (
ZZ>= `  s ) ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )
138137ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  A. n  e.  ( ZZ>= `  s )
( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
139 elfzelz 10100 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  e.  ZZ )
140139adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  ZZ )
141140zred 9448 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  e.  RR )
14211ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  m  e.  ZZ )
143142zred 9448 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  m  e.  RR )
14449ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  e.  ZZ )
145144zred 9448 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  e.  RR )
146 elfzle2 10103 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  j  <_  ( m  -  s
) )
147146adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  j  <_  ( m  -  s
) )
148141, 143, 145, 147lesubd 8576 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  s  <_  ( m  -  j
) )
149142, 140zsubcld 9453 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
m  -  j )  e.  ZZ )
150 eluz 9614 . . . . . . . . . . . . . . 15  |-  ( ( s  e.  ZZ  /\  ( m  -  j
)  e.  ZZ )  ->  ( ( m  -  j )  e.  ( ZZ>= `  s )  <->  s  <_  ( m  -  j ) ) )
151144, 149, 150syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( m  -  j
)  e.  ( ZZ>= `  s )  <->  s  <_  ( m  -  j ) ) )
152148, 151mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
m  -  j )  e.  ( ZZ>= `  s
) )
153136, 138, 152rspcdva 2873 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
154132, 153eqbrtrrd 4057 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
155128, 118, 154ltled 8145 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
156 lemul2a 8886 . . . . . . . . . 10  |-  ( ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR  /\  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )  e.  RR  /\  ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A
) ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  <_  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) )  ->  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
157128, 118, 130, 155, 156syl31anc 1252 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
15852, 83, 119, 157fsumle 11628 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
159102recnd 8055 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  e.  CC )
16097rpcnd 9773 . . . . . . . . . . 11  |-  ( ph  ->  ( E  /  2
)  e.  CC )
161160adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( E  /  2 )  e.  CC )
162 peano2re 8162 . . . . . . . . . . . . 13  |-  ( sum_ j  e.  NN0  ( K `
 j )  e.  RR  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR )
163109, 162syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR )
164163recnd 8055 . . . . . . . . . . 11  |-  ( ph  ->  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  CC )
165164adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  CC )
166114rpap0d 9777 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) #  0 )
167159, 161, 165, 166divassapd 8853 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  =  ( sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
168 fveq2 5558 . . . . . . . . . . . . . . . . 17  |-  ( n  =  j  ->  ( K `  n )  =  ( K `  j ) )
169168cbvsumv 11526 . . . . . . . . . . . . . . . 16  |-  sum_ n  e.  NN0  ( K `  n )  =  sum_ j  e.  NN0  ( K `
 j )
170169oveq1i 5932 . . . . . . . . . . . . . . 15  |-  ( sum_ n  e.  NN0  ( K `  n )  +  1 )  =  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )
171170oveq2i 5933 . . . . . . . . . . . . . 14  |-  ( ( E  /  2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  =  ( ( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
172171, 116eqeltrid 2283 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  RR+ )
173172rpcnd 9773 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E  / 
2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  CC )
174173adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) )  e.  CC )
17579recnd 8055 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  NN0 )  ->  ( abs `  A )  e.  CC )
17614, 100, 175syl2an 289 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... (
m  -  s ) ) )  ->  ( abs `  A )  e.  CC )
17752, 174, 176fsummulc1 11614 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) ) )
178171oveq2i 5933 . . . . . . . . . 10  |-  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
179171oveq2i 5933 . . . . . . . . . . . 12  |-  ( ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
180179a1i 9 . . . . . . . . . . 11  |-  ( j  e.  ( 0 ... ( m  -  s
) )  ->  (
( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  =  ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
181180sumeq2i 11529 . . . . . . . . . 10  |-  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ n  e.  NN0  ( K `  n )  +  1 ) ) )  = 
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
182177, 178, 1813eqtr3g 2252 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( ( E  /  2 )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  =  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  (
( E  /  2
)  /  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) ) ) )
183167, 182eqtrd 2229 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  =  sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( ( E  /  2 )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) ) )
184158, 183breqtrrd 4061 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
185109adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  e.  RR )
186163adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  e.  RR )
187 fz0ssnn0 10191 . . . . . . . . . . . . 13  |-  ( 0 ... ( m  -  s ) )  C_  NN0
188187a1i 9 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... ( m  -  s ) )  C_  NN0 )
189106adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  ( K `  j )  =  ( abs `  A
) )
190 nn0z 9346 . . . . . . . . . . . . . . 15  |-  ( j  e.  NN0  ->  j  e.  ZZ )
191190adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  j  e.  ZZ )
192 0zd 9338 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  0  e.  ZZ )
19351adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  (
m  -  s )  e.  ZZ )
194 fzdcel 10115 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ZZ  /\  0  e.  ZZ  /\  (
m  -  s )  e.  ZZ )  -> DECID  j  e.  ( 0 ... (
m  -  s ) ) )
195191, 192, 193, 194syl3anc 1249 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  -> DECID  j  e.  (
0 ... ( m  -  s ) ) )
196195ralrimiva 2570 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  A. j  e.  NN0 DECID  j  e.  ( 0 ... ( m  -  s ) ) )
19779adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  ( abs `  A )  e.  RR )
198110adantlr 477 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e. 
NN0 )  ->  0  <_  ( abs `  A
) )
199108adantr 276 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  seq 0
(  +  ,  K
)  e.  dom  ~~>  )
20033, 10, 52, 188, 189, 196, 197, 198, 199isumlessdc 11661 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <_  sum_ j  e. 
NN0  ( abs `  A
) )
201106sumeq2dv 11533 . . . . . . . . . . . 12  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  =  sum_ j  e.  NN0  ( abs `  A ) )
202201adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  =  sum_ j  e.  NN0  ( abs `  A ) )
203200, 202breqtrrd 4061 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <_  sum_ j  e. 
NN0  ( K `  j ) )
204109ltp1d 8957 . . . . . . . . . . 11  |-  ( ph  -> 
sum_ j  e.  NN0  ( K `  j )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )
205204adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e. 
NN0  ( K `  j )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )
206102, 185, 186, 203, 205lelttrd 8151 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  <  ( sum_ j  e.  NN0  ( K `
 j )  +  1 ) )
20797rpregt0d 9778 . . . . . . . . . . 11  |-  ( ph  ->  ( ( E  / 
2 )  e.  RR  /\  0  <  ( E  /  2 ) ) )
208207adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  e.  RR  /\  0  < 
( E  /  2
) ) )
209 ltmul1 8619 . . . . . . . . . 10  |-  ( (
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  e.  RR  /\  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  ( ( E  /  2 )  e.  RR  /\  0  <  ( E  /  2
) ) )  -> 
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  <  ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
210102, 186, 208, 209syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 )  <->  ( sum_ j  e.  ( 0 ... (
m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  <  ( ( sum_ j  e.  NN0  ( K `
 j )  +  1 )  x.  ( E  /  2 ) ) ) )
211206, 210mpbid 147 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) )
212113rpregt0d 9778 . . . . . . . . . 10  |-  ( ph  ->  ( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  <  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
213212adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  < 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )
214 ltdivmul 8903 . . . . . . . . 9  |-  ( ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  e.  RR  /\  ( E  /  2 )  e.  RR  /\  ( (
sum_ j  e.  NN0  ( K `  j )  +  1 )  e.  RR  /\  0  < 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) ) )  ->  ( (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  /  2 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
215103, 99, 213, 214syl3anc 1249 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A
)  x.  ( E  /  2 ) )  /  ( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  /  2 )  <->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  < 
( ( sum_ j  e.  NN0  ( K `  j )  +  1 )  x.  ( E  /  2 ) ) ) )
216211, 215mpbird 167 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( abs `  A )  x.  ( E  / 
2 ) )  / 
( sum_ j  e.  NN0  ( K `  j )  +  1 ) )  <  ( E  / 
2 ) )
21784, 115, 99, 184, 216lelttrd 8151 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... (
m  -  s ) ) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  ( E  /  2 ) )
218 mertens.p . . . . . . . . . 10  |-  ( ph  ->  P  e.  RR )
21998, 218remulcld 8057 . . . . . . . . 9  |-  ( ph  ->  ( ( E  / 
2 )  x.  P
)  e.  RR )
220 mertens.pge0 . . . . . . . . . 10  |-  ( ph  ->  0  <_  P )
221218, 220ge0p1rpd 9802 . . . . . . . . 9  |-  ( ph  ->  ( P  +  1 )  e.  RR+ )
222219, 221rerpdivcld 9803 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  e.  RR )
223222adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( E  /  2
)  x.  P )  /  ( P  + 
1 ) )  e.  RR )
2245nnrpd 9769 . . . . . . . . . . . . . 14  |-  ( ph  ->  s  e.  RR+ )
22597, 224rpdivcld 9789 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( E  / 
2 )  /  s
)  e.  RR+ )
226225, 221rpdivcld 9789 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR+ )
227226rpred 9771 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR )
228227, 218remulcld 8057 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  RR )
229228ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P )  e.  RR )
230 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ph )
23194, 15syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  NN0 )
232230, 231, 79syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  e.  RR )
233227ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  e.  RR )
234230, 231, 106syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( K `  j )  =  ( abs `  A
) )
235 fveq2 5558 . . . . . . . . . . . . . 14  |-  ( m  =  j  ->  ( K `  m )  =  ( K `  j ) )
236235breq1d 4043 . . . . . . . . . . . . 13  |-  ( m  =  j  ->  (
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) )  <->  ( K `  j )  <  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) ) ) )
2377simprd 114 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. m  e.  (
ZZ>= `  t ) ( K `  m )  <  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) )
238237ad2antrr 488 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  A. m  e.  ( ZZ>= `  t )
( K `  m
)  <  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) ) )
239 elfzuz 10096 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ( ( m  -  s )  +  1 ) ... m )  ->  j  e.  ( ZZ>= `  ( (
m  -  s )  +  1 ) ) )
240 eluzle 9613 . . . . . . . . . . . . . . . . . 18  |-  ( m  e.  ( ZZ>= `  (
s  +  t ) )  ->  ( s  +  t )  <_  m )
241240adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  +  t )  <_  m )
2428nn0zd 9446 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  t  e.  ZZ )
243242adantr 276 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  e.  ZZ )
244243zred 9448 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  e.  RR )
24556, 244, 55leaddsub2d 8574 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
s  +  t )  <_  m  <->  t  <_  ( m  -  s ) ) )
246241, 245mpbid 147 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  t  <_  ( m  -  s ) )
247 eluz 9614 . . . . . . . . . . . . . . . . 17  |-  ( ( t  e.  ZZ  /\  ( m  -  s
)  e.  ZZ )  ->  ( ( m  -  s )  e.  ( ZZ>= `  t )  <->  t  <_  ( m  -  s ) ) )
248243, 72, 247syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  e.  ( ZZ>= `  t
)  <->  t  <_  (
m  -  s ) ) )
249246, 248mpbird 167 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  ( ZZ>= `  t )
)
250 peano2uz 9657 . . . . . . . . . . . . . . 15  |-  ( ( m  -  s )  e.  ( ZZ>= `  t
)  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  t )
)
251249, 250syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
m  -  s )  +  1 )  e.  ( ZZ>= `  t )
)
252 uztrn 9618 . . . . . . . . . . . . . 14  |-  ( ( j  e.  ( ZZ>= `  ( ( m  -  s )  +  1 ) )  /\  (
( m  -  s
)  +  1 )  e.  ( ZZ>= `  t
) )  ->  j  e.  ( ZZ>= `  t )
)
253239, 251, 252syl2anr 290 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  ( ZZ>= `  t )
)
254236, 238, 253rspcdva 2873 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( K `  j )  <  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
255234, 254eqbrtrrd 4057 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  < 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
256232, 233, 255ltled 8145 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  A )  <_ 
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )
257 breq1 4036 . . . . . . . . . . 11  |-  ( w  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( w  <_  P 
<->  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P ) )
258 mertens.pub . . . . . . . . . . . 12  |-  ( ph  ->  A. w  e.  T  w  <_  P )
259258ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  A. w  e.  T  w  <_  P )
26055adantr 276 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  m  e.  RR )
261 peano2zm 9364 . . . . . . . . . . . . . . . . . 18  |-  ( s  e.  ZZ  ->  (
s  -  1 )  e.  ZZ )
26249, 261syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( s  -  1 )  e.  ZZ )
263262zred 9448 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( s  -  1 )  e.  RR )
264263ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
s  -  1 )  e.  RR )
265231nn0red 9303 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  j  e.  RR )
26612zcnd 9449 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  m  e.  CC )
26756recnd 8055 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  s  e.  CC )
268 1cnd 8042 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  1  e.  CC )
269266, 267, 268subsubd 8365 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  ( s  - 
1 ) )  =  ( ( m  -  s )  +  1 ) )
270269adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  ( s  -  1 ) )  =  ( ( m  -  s )  +  1 ) )
271 elfzle1 10102 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( ( ( m  -  s )  +  1 ) ... m )  ->  (
( m  -  s
)  +  1 )  <_  j )
272271adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  s
)  +  1 )  <_  j )
273270, 272eqbrtrd 4055 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  ( s  -  1 ) )  <_  j )
274260, 264, 265, 273subled 8575 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  <_  ( s  - 
1 ) )
27594, 19syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  NN0 )
276275, 33eleqtrdi 2289 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  ( ZZ>= `  0
) )
277262ad2antrr 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
s  -  1 )  e.  ZZ )
278 elfz5 10092 . . . . . . . . . . . . . . 15  |-  ( ( ( m  -  j
)  e.  ( ZZ>= ` 
0 )  /\  (
s  -  1 )  e.  ZZ )  -> 
( ( m  -  j )  e.  ( 0 ... ( s  -  1 ) )  <-> 
( m  -  j
)  <_  ( s  -  1 ) ) )
279276, 277, 278syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  j
)  e.  ( 0 ... ( s  - 
1 ) )  <->  ( m  -  j )  <_ 
( s  -  1 ) ) )
280274, 279mpbird 167 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
m  -  j )  e.  ( 0 ... ( s  -  1 ) ) )
281 simplll 533 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ph )
28294, 22syldan 282 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( m  -  j
)  +  1 )  e.  NN0 )
283282, 25sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  k  e.  NN0 )
284281, 283, 27syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( (
( m  -  s
)  +  1 ) ... m ) )  /\  k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) )  ->  ( G `  k )  =  B )
285284sumeq2dv 11533 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
)  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )
286285eqcomd 2202 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  =  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) )
287286fveq2d 5562 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) ( G `  k ) ) )
288135rspceeqv 2886 . . . . . . . . . . . . 13  |-  ( ( ( m  -  j
)  e.  ( 0 ... ( s  - 
1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) ( G `  k
) ) )  ->  E. n  e.  (
0 ... ( s  - 
1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) ) )
289280, 287, 288syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) )
29094, 39syldan 282 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B  e.  CC )
291290abscld 11346 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
292 eqeq1 2203 . . . . . . . . . . . . . . 15  |-  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) )  <-> 
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
293292rexbidv 2498 . . . . . . . . . . . . . 14  |-  ( z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  ->  ( E. n  e.  ( 0 ... (
s  -  1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1 ) ) ( G `  k
) )  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
294 mertens.10 . . . . . . . . . . . . . 14  |-  T  =  { z  |  E. n  e.  ( 0 ... ( s  - 
1 ) ) z  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) }
295293, 294elab2g 2911 . . . . . . . . . . . . 13  |-  ( ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  RR  ->  ( ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
296291, 295syl 14 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T  <->  E. n  e.  ( 0 ... (
s  -  1 ) ) ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  =  ( abs `  sum_ k  e.  ( ZZ>= `  ( n  +  1
) ) ( G `
 k ) ) ) )
297289, 296mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  T )
298257, 259, 297rspcdva 2873 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P )
299230, 231, 129syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  e.  RR  /\  0  <_  ( abs `  A
) ) )
30094, 81syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR )
30139absge0d 11349 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
30294, 301syldan 282 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )
303300, 302jca 306 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  e.  RR  /\  0  <_  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
304218ad2antrr 488 . . . . . . . . . . 11  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  P  e.  RR )
305 lemul12a 8889 . . . . . . . . . . 11  |-  ( ( ( ( ( abs `  A )  e.  RR  /\  0  <_  ( abs `  A ) )  /\  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  RR )  /\  ( ( ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  e.  RR  /\  0  <_  ( abs ` 
sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  /\  P  e.  RR ) )  -> 
( ( ( abs `  A )  <_  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B )  <_  P )  -> 
( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) ) )
306299, 233, 303, 304, 305syl22anc 1250 . . . . . . . . . 10  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( ( abs `  A
)  <_  ( (
( E  /  2
)  /  s )  /  ( P  + 
1 ) )  /\  ( abs `  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B )  <_  P
)  ->  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  ( (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  x.  P ) ) )
307256, 298, 306mp2and 433 . . . . . . . . 9  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( ( ( m  -  s )  +  1 ) ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )
30886, 95, 229, 307fsumle 11628 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) )
309228recnd 8055 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  CC )
310309adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) )  x.  P )  e.  CC )
311 fsumconst 11619 . . . . . . . . . 10  |-  ( ( ( ( ( m  -  s )  +  1 ) ... m
)  e.  Fin  /\  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  e.  CC )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m ) ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
)  =  ( ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) ) )
31286, 310, 311syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P )  =  ( ( `  ( (
( m  -  s
)  +  1 ) ... m ) )  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
313 1zzd 9353 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  1  e.  ZZ )
314 fzen 10118 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  ZZ  /\  s  e.  ZZ  /\  (
m  -  s )  e.  ZZ )  -> 
( 1 ... s
)  ~~  ( (
1  +  ( m  -  s ) ) ... ( s  +  ( m  -  s
) ) ) )
315313, 50, 72, 314syl3anc 1249 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  ~~  ( ( 1  +  ( m  -  s
) ) ... (
s  +  ( m  -  s ) ) ) )
316 ax-1cn 7972 . . . . . . . . . . . . . . 15  |-  1  e.  CC
31772zcnd 9449 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  CC )
318 addcom 8163 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( m  -  s
)  e.  CC )  ->  ( 1  +  ( m  -  s
) )  =  ( ( m  -  s
)  +  1 ) )
319316, 317, 318sylancr 414 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1  +  ( m  -  s ) )  =  ( ( m  -  s )  +  1 ) )
320267, 266pncan3d 8340 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  +  ( m  -  s ) )  =  m )
321319, 320oveq12d 5940 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
1  +  ( m  -  s ) ) ... ( s  +  ( m  -  s
) ) )  =  ( ( ( m  -  s )  +  1 ) ... m
) )
322315, 321breqtrd 4059 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  ~~  ( ( ( m  -  s )  +  1 ) ... m
) )
323313, 50fzfigd 10523 . . . . . . . . . . . . 13  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 1 ... s )  e. 
Fin )
324 hashen 10876 . . . . . . . . . . . . 13  |-  ( ( ( 1 ... s
)  e.  Fin  /\  ( ( ( m  -  s )  +  1 ) ... m
)  e.  Fin )  ->  ( ( `  (
1 ... s ) )  =  ( `  (
( ( m  -  s )  +  1 ) ... m ) )  <->  ( 1 ... s )  ~~  (
( ( m  -  s )  +  1 ) ... m ) ) )
325323, 86, 324syl2anc 411 . . . . . . . . . . . 12  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( `  ( 1 ... s
) )  =  ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  <->  ( 1 ... s )  ~~  ( ( ( m  -  s )  +  1 ) ... m
) ) )
326322, 325mpbird 167 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
1 ... s ) )  =  ( `  (
( ( m  -  s )  +  1 ) ... m ) ) )
327 hashfz1 10875 . . . . . . . . . . . 12  |-  ( s  e.  NN0  ->  ( `  (
1 ... s ) )  =  s )
32853, 327syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
1 ... s ) )  =  s )
329326, 328eqtr3d 2231 . . . . . . . . . 10  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( `  (
( ( m  -  s )  +  1 ) ... m ) )  =  s )
330329oveq1d 5937 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( `  ( ( ( m  -  s )  +  1 ) ... m
) )  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )  =  ( s  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
331218recnd 8055 . . . . . . . . . . . 12  |-  ( ph  ->  P  e.  CC )
332221rpcnd 9773 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  +  1 )  e.  CC )
333221rpap0d 9777 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  +  1 ) #  0 )
334160, 331, 332, 333div23apd 8855 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  =  ( ( ( E  /  2
)  /  ( P  +  1 ) )  x.  P ) )
33549zcnd 9449 . . . . . . . . . . . . . 14  |-  ( ph  ->  s  e.  CC )
336225rpcnd 9773 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( E  / 
2 )  /  s
)  e.  CC )
337335, 336, 332, 333divassapd 8853 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( s  x.  ( ( E  / 
2 )  /  s
) )  /  ( P  +  1 ) )  =  ( s  x.  ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) ) ) )
3385nnap0d 9036 . . . . . . . . . . . . . . 15  |-  ( ph  ->  s #  0 )
339160, 335, 338divcanap2d 8819 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( s  x.  (
( E  /  2
)  /  s ) )  =  ( E  /  2 ) )
340339oveq1d 5937 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( s  x.  ( ( E  / 
2 )  /  s
) )  /  ( P  +  1 ) )  =  ( ( E  /  2 )  /  ( P  + 
1 ) ) )
341337, 340eqtr3d 2231 . . . . . . . . . . . 12  |-  ( ph  ->  ( s  x.  (
( ( E  / 
2 )  /  s
)  /  ( P  +  1 ) ) )  =  ( ( E  /  2 )  /  ( P  + 
1 ) ) )
342341oveq1d 5937 . . . . . . . . . . 11  |-  ( ph  ->  ( ( s  x.  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )  x.  P
)  =  ( ( ( E  /  2
)  /  ( P  +  1 ) )  x.  P ) )
343226rpcnd 9773 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  e.  CC )
344335, 343, 331mulassd 8050 . . . . . . . . . . 11  |-  ( ph  ->  ( ( s  x.  ( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) ) )  x.  P
)  =  ( s  x.  ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P ) ) )
345334, 342, 3443eqtr2rd 2236 . . . . . . . . . 10  |-  ( ph  ->  ( s  x.  (
( ( ( E  /  2 )  / 
s )  /  ( P  +  1 ) )  x.  P ) )  =  ( ( ( E  /  2
)  x.  P )  /  ( P  + 
1 ) ) )
346345adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( s  x.  ( ( ( ( E  /  2 )  /  s )  / 
( P  +  1 ) )  x.  P
) )  =  ( ( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
347312, 330, 3463eqtrd 2233 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( ( ( E  /  2
)  /  s )  /  ( P  + 
1 ) )  x.  P )  =  ( ( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
348308, 347breqtrd 4059 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <_  (
( ( E  / 
2 )  x.  P
)  /  ( P  +  1 ) ) )
349 peano2re 8162 . . . . . . . . . . 11  |-  ( P  e.  RR  ->  ( P  +  1 )  e.  RR )
350218, 349syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( P  +  1 )  e.  RR )
351218ltp1d 8957 . . . . . . . . . 10  |-  ( ph  ->  P  <  ( P  +  1 ) )
352218, 350, 97, 351ltmul2dd 9828 . . . . . . . . 9  |-  ( ph  ->  ( ( E  / 
2 )  x.  P
)  <  ( ( E  /  2 )  x.  ( P  +  1 ) ) )
353219, 98, 221ltdivmul2d 9824 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( E  /  2 )  x.  P )  / 
( P  +  1 ) )  <  ( E  /  2 )  <->  ( ( E  /  2 )  x.  P )  <  (
( E  /  2
)  x.  ( P  +  1 ) ) ) )
354352, 353mpbird 167 . . . . . . . 8  |-  ( ph  ->  ( ( ( E  /  2 )  x.  P )  /  ( P  +  1 ) )  <  ( E  /  2 ) )
355354adantr 276 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
( E  /  2
)  x.  P )  /  ( P  + 
1 ) )  < 
( E  /  2
) )
35696, 223, 99, 348, 355lelttrd 8151 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( ( ( m  -  s )  +  1 ) ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  ( E  /  2 ) )
35784, 96, 99, 99, 217, 356lt2addd 8594 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )  < 
( ( E  / 
2 )  +  ( E  /  2 ) ) )
35817, 39absmuld 11359 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  =  ( ( abs `  A )  x.  ( abs `  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
359358sumeq2dv 11533 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  = 
sum_ j  e.  ( 0 ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )
36072zred 9448 . . . . . . . . 9  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  e.  RR )
361360ltp1d 8957 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( m  -  s )  < 
( ( m  -  s )  +  1 ) )
362 fzdisj 10127 . . . . . . . 8  |-  ( ( m  -  s )  <  ( ( m  -  s )  +  1 )  ->  (
( 0 ... (
m  -  s ) )  i^i  ( ( ( m  -  s
)  +  1 ) ... m ) )  =  (/) )
363361, 362syl 14 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( (
0 ... ( m  -  s ) )  i^i  ( ( ( m  -  s )  +  1 ) ... m
) )  =  (/) )
364 fzsplit 10126 . . . . . . . 8  |-  ( ( m  -  s )  e.  ( 0 ... m )  ->  (
0 ... m )  =  ( ( 0 ... ( m  -  s
) )  u.  (
( ( m  -  s )  +  1 ) ... m ) ) )
36570, 364syl 14 . . . . . . 7  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( 0 ... m )  =  ( ( 0 ... ( m  -  s
) )  u.  (
( ( m  -  s )  +  1 ) ... m ) ) )
36682recnd 8055 . . . . . . 7  |-  ( ( ( ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  /\  j  e.  ( 0 ... m
) )  ->  (
( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  e.  CC )
367363, 365, 13, 366fsumsplit 11572 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( ( abs `  A )  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  =  (
sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) ) )
368359, 367eqtr2d 2230 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( sum_ j  e.  ( 0 ... ( m  -  s ) ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  +  sum_ j  e.  ( (
( m  -  s
)  +  1 ) ... m ) ( ( abs `  A
)  x.  ( abs `  sum_ k  e.  (
ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) ) )  = 
sum_ j  e.  ( 0 ... m ) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) ) )
36945rpcnd 9773 . . . . . . 7  |-  ( ph  ->  E  e.  CC )
370369adantr 276 . . . . . 6  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  E  e.  CC )
3713702halvesd 9237 . . . . 5  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( ( E  /  2 )  +  ( E  /  2
) )  =  E )
372357, 368, 3713brtr3d 4064 . . . 4  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  sum_ j  e.  ( 0 ... m
) ( abs `  ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E )
37342, 44, 47, 48, 372lelttrd 8151 . . 3  |-  ( (
ph  /\  m  e.  ( ZZ>= `  ( s  +  t ) ) )  ->  ( abs ` 
sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
374373ralrimiva 2570 . 2  |-  ( ph  ->  A. m  e.  (
ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
375 fveq2 5558 . . . 4  |-  ( y  =  ( s  +  t )  ->  ( ZZ>=
`  y )  =  ( ZZ>= `  ( s  +  t ) ) )
376375raleqdv 2699 . . 3  |-  ( y  =  ( s  +  t )  ->  ( A. m  e.  ( ZZ>=
`  y ) ( abs `  sum_ j  e.  ( 0 ... m
) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E  <->  A. m  e.  ( ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( (
m  -  j )  +  1 ) ) B ) )  < 
E ) )
377376rspcev 2868 . 2  |-  ( ( ( s  +  t )  e.  NN0  /\  A. m  e.  ( ZZ>= `  ( s  +  t ) ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
3789, 374, 377syl2anc 411 1  |-  ( ph  ->  E. y  e.  NN0  A. m  e.  ( ZZ>= `  y ) ( abs `  sum_ j  e.  ( 0 ... m ) ( A  x.  sum_ k  e.  ( ZZ>= `  ( ( m  -  j )  +  1 ) ) B ) )  <  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476    u. cun 3155    i^i cin 3156    C_ wss 3157   (/)c0 3450   class class class wbr 4033   dom cdm 4663   ` cfv 5258  (class class class)co 5922    ~~ cen 6797   Fincfn 6799   CCcc 7877   RRcr 7878   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884    < clt 8061    <_ cle 8062    - cmin 8197    / cdiv 8699   NNcn 8990   2c2 9041   NN0cn0 9249   ZZcz 9326   ZZ>=cuz 9601   RR+crp 9728   ...cfz 10083    seqcseq 10539  ♯chash 10867   abscabs 11162    ~~> cli 11443   sum_csu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  mertenslem2  11701
  Copyright terms: Public domain W3C validator