| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9769 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-rp 9758 |
| This theorem is referenced by: rpregt0d 9807 ltmulgt11d 9836 ltmulgt12d 9837 gt0divd 9838 ge0divd 9839 lediv12ad 9860 expgt0 10698 nnesq 10785 bccl2 10894 resqrexlemp1rp 11236 resqrexlemover 11240 resqrexlemnm 11248 resqrexlemgt0 11250 resqrexlemglsq 11252 sqrtgt0d 11389 reccn2ap 11543 fsumlt 11694 eirraplem 12007 dvdsmodexp 12025 bitsmod 12186 prmind2 12361 sqrt2irrlem 12402 modprmn0modprm0 12498 4sqlem11 12643 4sqlem12 12644 modxai 12658 ssblex 14821 mulc1cncf 14979 cncfmptc 14986 mulcncflem 14997 cnplimclemle 15058 pilem3 15173 sgmnncl 15378 iooref1o 15837 trilpolemeq1 15843 nconstwlpolemgt0 15867 taupi 15876 |
| Copyright terms: Public domain | W3C validator |