| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9857 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-rp 9846 |
| This theorem is referenced by: rpregt0d 9895 ltmulgt11d 9924 ltmulgt12d 9925 gt0divd 9926 ge0divd 9927 lediv12ad 9948 expgt0 10789 nnesq 10876 bccl2 10985 resqrexlemp1rp 11512 resqrexlemover 11516 resqrexlemnm 11524 resqrexlemgt0 11526 resqrexlemglsq 11528 sqrtgt0d 11665 reccn2ap 11819 fsumlt 11970 eirraplem 12283 dvdsmodexp 12301 bitsmod 12462 prmind2 12637 sqrt2irrlem 12678 modprmn0modprm0 12774 4sqlem11 12919 4sqlem12 12920 modxai 12934 ssblex 15099 mulc1cncf 15257 cncfmptc 15264 mulcncflem 15275 cnplimclemle 15336 pilem3 15451 sgmnncl 15656 iooref1o 16361 trilpolemeq1 16367 nconstwlpolemgt0 16391 taupi 16400 |
| Copyright terms: Public domain | W3C validator |