| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9807 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-rp 9796 |
| This theorem is referenced by: rpregt0d 9845 ltmulgt11d 9874 ltmulgt12d 9875 gt0divd 9876 ge0divd 9877 lediv12ad 9898 expgt0 10739 nnesq 10826 bccl2 10935 resqrexlemp1rp 11392 resqrexlemover 11396 resqrexlemnm 11404 resqrexlemgt0 11406 resqrexlemglsq 11408 sqrtgt0d 11545 reccn2ap 11699 fsumlt 11850 eirraplem 12163 dvdsmodexp 12181 bitsmod 12342 prmind2 12517 sqrt2irrlem 12558 modprmn0modprm0 12654 4sqlem11 12799 4sqlem12 12800 modxai 12814 ssblex 14978 mulc1cncf 15136 cncfmptc 15143 mulcncflem 15154 cnplimclemle 15215 pilem3 15330 sgmnncl 15535 iooref1o 16114 trilpolemeq1 16120 nconstwlpolemgt0 16144 taupi 16153 |
| Copyright terms: Public domain | W3C validator |