| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9742 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9731 |
| This theorem is referenced by: rpregt0d 9780 ltmulgt11d 9809 ltmulgt12d 9810 gt0divd 9811 ge0divd 9812 lediv12ad 9833 expgt0 10666 nnesq 10753 bccl2 10862 resqrexlemp1rp 11173 resqrexlemover 11177 resqrexlemnm 11185 resqrexlemgt0 11187 resqrexlemglsq 11189 sqrtgt0d 11326 reccn2ap 11480 fsumlt 11631 eirraplem 11944 dvdsmodexp 11962 bitsmod 12123 prmind2 12298 sqrt2irrlem 12339 modprmn0modprm0 12435 4sqlem11 12580 4sqlem12 12581 modxai 12595 ssblex 14677 mulc1cncf 14835 cncfmptc 14842 mulcncflem 14853 cnplimclemle 14914 pilem3 15029 sgmnncl 15234 iooref1o 15688 trilpolemeq1 15694 nconstwlpolemgt0 15718 taupi 15727 |
| Copyright terms: Public domain | W3C validator |