![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rpgt0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rpgt0 9734 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3158 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-rp 9723 |
This theorem is referenced by: rpregt0d 9772 ltmulgt11d 9801 ltmulgt12d 9802 gt0divd 9803 ge0divd 9804 lediv12ad 9825 expgt0 10646 nnesq 10733 bccl2 10842 resqrexlemp1rp 11153 resqrexlemover 11157 resqrexlemnm 11165 resqrexlemgt0 11167 resqrexlemglsq 11169 sqrtgt0d 11306 reccn2ap 11459 fsumlt 11610 eirraplem 11923 dvdsmodexp 11941 prmind2 12261 sqrt2irrlem 12302 modprmn0modprm0 12397 4sqlem11 12542 4sqlem12 12543 ssblex 14610 mulc1cncf 14768 cncfmptc 14775 mulcncflem 14786 cnplimclemle 14847 pilem3 14959 iooref1o 15594 trilpolemeq1 15600 nconstwlpolemgt0 15624 taupi 15633 |
Copyright terms: Public domain | W3C validator |