![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version |
Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
rpred.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rpgt0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | rpgt0 9731 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-rp 9720 |
This theorem is referenced by: rpregt0d 9769 ltmulgt11d 9798 ltmulgt12d 9799 gt0divd 9800 ge0divd 9801 lediv12ad 9822 expgt0 10643 nnesq 10730 bccl2 10839 resqrexlemp1rp 11150 resqrexlemover 11154 resqrexlemnm 11162 resqrexlemgt0 11164 resqrexlemglsq 11166 sqrtgt0d 11303 reccn2ap 11456 fsumlt 11607 eirraplem 11920 dvdsmodexp 11938 prmind2 12258 sqrt2irrlem 12299 modprmn0modprm0 12394 4sqlem11 12539 4sqlem12 12540 ssblex 14599 mulc1cncf 14744 cncfmptc 14750 mulcncflem 14761 cnplimclemle 14822 pilem3 14918 iooref1o 15524 trilpolemeq1 15530 nconstwlpolemgt0 15554 taupi 15563 |
Copyright terms: Public domain | W3C validator |