| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9757 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-rp 9746 |
| This theorem is referenced by: rpregt0d 9795 ltmulgt11d 9824 ltmulgt12d 9825 gt0divd 9826 ge0divd 9827 lediv12ad 9848 expgt0 10681 nnesq 10768 bccl2 10877 resqrexlemp1rp 11188 resqrexlemover 11192 resqrexlemnm 11200 resqrexlemgt0 11202 resqrexlemglsq 11204 sqrtgt0d 11341 reccn2ap 11495 fsumlt 11646 eirraplem 11959 dvdsmodexp 11977 bitsmod 12138 prmind2 12313 sqrt2irrlem 12354 modprmn0modprm0 12450 4sqlem11 12595 4sqlem12 12596 modxai 12610 ssblex 14751 mulc1cncf 14909 cncfmptc 14916 mulcncflem 14927 cnplimclemle 14988 pilem3 15103 sgmnncl 15308 iooref1o 15765 trilpolemeq1 15771 nconstwlpolemgt0 15795 taupi 15804 |
| Copyright terms: Public domain | W3C validator |