| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rpgt0d | Unicode version | ||
| Description: A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| rpred.1 |
|
| Ref | Expression |
|---|---|
| rpgt0d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 |
. 2
| |
| 2 | rpgt0 9786 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rab 2492 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-rp 9775 |
| This theorem is referenced by: rpregt0d 9824 ltmulgt11d 9853 ltmulgt12d 9854 gt0divd 9855 ge0divd 9856 lediv12ad 9877 expgt0 10715 nnesq 10802 bccl2 10911 resqrexlemp1rp 11259 resqrexlemover 11263 resqrexlemnm 11271 resqrexlemgt0 11273 resqrexlemglsq 11275 sqrtgt0d 11412 reccn2ap 11566 fsumlt 11717 eirraplem 12030 dvdsmodexp 12048 bitsmod 12209 prmind2 12384 sqrt2irrlem 12425 modprmn0modprm0 12521 4sqlem11 12666 4sqlem12 12667 modxai 12681 ssblex 14845 mulc1cncf 15003 cncfmptc 15010 mulcncflem 15021 cnplimclemle 15082 pilem3 15197 sgmnncl 15402 iooref1o 15906 trilpolemeq1 15912 nconstwlpolemgt0 15936 taupi 15945 |
| Copyright terms: Public domain | W3C validator |