ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm6 Unicode version

Theorem isprm6 12079
Description: A number is prime iff it satisfies Euclid's lemma euclemma 12078. (Contributed by Mario Carneiro, 6-Sep-2015.)
Assertion
Ref Expression
isprm6  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Distinct variable group:    x, y, P

Proof of Theorem isprm6
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 prmuz2 12063 . . 3  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
2 euclemma 12078 . . . . . 6  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  y  e.  ZZ )  ->  ( P  ||  ( x  x.  y )  <->  ( P  ||  x  \/  P  ||  y ) ) )
323expb 1194 . . . . 5  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  <->  ( P  ||  x  \/  P  ||  y
) ) )
43biimpd 143 . . . 4  |-  ( ( P  e.  Prime  /\  (
x  e.  ZZ  /\  y  e.  ZZ )
)  ->  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
54ralrimivva 2548 . . 3  |-  ( P  e.  Prime  ->  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )
61, 5jca 304 . 2  |-  ( P  e.  Prime  ->  ( P  e.  ( ZZ>= `  2
)  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
7 simpl 108 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  (
ZZ>= `  2 ) )
8 eluz2nn 9504 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
98adantr 274 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN )
109nnzd 9312 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  ZZ )
11 iddvds 11744 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  P  ||  P )
1210, 11syl 14 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  P
)
13 nncn 8865 . . . . . . . . . . . 12  |-  ( P  e.  NN  ->  P  e.  CC )
149, 13syl 14 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  CC )
15 nncn 8865 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z  e.  CC )
1615ad2antrl 482 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  CC )
17 nnap0 8886 . . . . . . . . . . . 12  |-  ( z  e.  NN  ->  z #  0 )
1817ad2antrl 482 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z #  0 )
1914, 16, 18divcanap1d 8687 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  x.  z )  =  P )
2012, 19breqtrrd 4010 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
2120adantr 274 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  ||  (
( P  /  z
)  x.  z ) )
22 simprr 522 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  ||  P
)
23 simprl 521 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN )
24 nndivdvds 11736 . . . . . . . . . . . . 13  |-  ( ( P  e.  NN  /\  z  e.  NN )  ->  ( z  ||  P  <->  ( P  /  z )  e.  NN ) )
259, 23, 24syl2anc 409 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  ||  P 
<->  ( P  /  z
)  e.  NN ) )
2622, 25mpbid 146 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  NN )
2726nnzd 9312 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
z )  e.  ZZ )
28 nnz 9210 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  z  e.  ZZ )
2928ad2antrl 482 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  ZZ )
3027, 29jca 304 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  z )  e.  ZZ  /\  z  e.  ZZ ) )
31 oveq1 5849 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  (
x  x.  y )  =  ( ( P  /  z )  x.  y ) )
3231breq2d 3994 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  ( x  x.  y )  <->  P  ||  (
( P  /  z
)  x.  y ) ) )
33 breq2 3986 . . . . . . . . . . . 12  |-  ( x  =  ( P  / 
z )  ->  ( P  ||  x  <->  P  ||  ( P  /  z ) ) )
3433orbi1d 781 . . . . . . . . . . 11  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  x  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  y ) ) )
3532, 34imbi12d 233 . . . . . . . . . 10  |-  ( x  =  ( P  / 
z )  ->  (
( P  ||  (
x  x.  y )  ->  ( P  ||  x  \/  P  ||  y
) )  <->  ( P  ||  ( ( P  / 
z )  x.  y
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) ) ) )
36 oveq2 5850 . . . . . . . . . . . 12  |-  ( y  =  z  ->  (
( P  /  z
)  x.  y )  =  ( ( P  /  z )  x.  z ) )
3736breq2d 3994 . . . . . . . . . . 11  |-  ( y  =  z  ->  ( P  ||  ( ( P  /  z )  x.  y )  <->  P  ||  (
( P  /  z
)  x.  z ) ) )
38 breq2 3986 . . . . . . . . . . . 12  |-  ( y  =  z  ->  ( P  ||  y  <->  P  ||  z
) )
3938orbi2d 780 . . . . . . . . . . 11  |-  ( y  =  z  ->  (
( P  ||  ( P  /  z )  \/  P  ||  y )  <-> 
( P  ||  ( P  /  z )  \/  P  ||  z ) ) )
4037, 39imbi12d 233 . . . . . . . . . 10  |-  ( y  =  z  ->  (
( P  ||  (
( P  /  z
)  x.  y )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  y ) )  <->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) ) )
4135, 40rspc2va 2844 . . . . . . . . 9  |-  ( ( ( ( P  / 
z )  e.  ZZ  /\  z  e.  ZZ )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4230, 41sylan 281 . . . . . . . 8  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( ( P  / 
z )  x.  z
)  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) ) )
4321, 42mpd 13 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( P  ||  ( P  /  z
)  \/  P  ||  z ) )
44 dvdsle 11782 . . . . . . . . . . . . 13  |-  ( ( P  e.  ZZ  /\  ( P  /  z
)  e.  NN )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4510, 26, 44syl2anc 409 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  P  <_  ( P  /  z ) ) )
4614div1d 8676 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  / 
1 )  =  P )
4746breq1d 3992 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P  /  1 )  <_ 
( P  /  z
)  <->  P  <_  ( P  /  z ) ) )
4845, 47sylibrd 168 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  ( P  /  1 )  <_ 
( P  /  z
) ) )
49 nnrp 9599 . . . . . . . . . . . . . 14  |-  ( z  e.  NN  ->  z  e.  RR+ )
5049rpregt0d 9639 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  (
z  e.  RR  /\  0  <  z ) )
5150ad2antrl 482 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  e.  RR  /\  0  < 
z ) )
52 1rp 9593 . . . . . . . . . . . . 13  |-  1  e.  RR+
53 rpregt0 9603 . . . . . . . . . . . . 13  |-  ( 1  e.  RR+  ->  ( 1  e.  RR  /\  0  <  1 ) )
5452, 53mp1i 10 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( 1  e.  RR  /\  0  <  1 ) )
55 nnrp 9599 . . . . . . . . . . . . . 14  |-  ( P  e.  NN  ->  P  e.  RR+ )
569, 55syl 14 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  RR+ )
5756rpregt0d 9639 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  e.  RR  /\  0  < 
P ) )
58 lediv2 8786 . . . . . . . . . . . 12  |-  ( ( ( z  e.  RR  /\  0  <  z )  /\  ( 1  e.  RR  /\  0  <  1 )  /\  ( P  e.  RR  /\  0  <  P ) )  -> 
( z  <_  1  <->  ( P  /  1 )  <_  ( P  / 
z ) ) )
5951, 54, 57, 58syl3anc 1228 . . . . . . . . . . 11  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  ( P  / 
1 )  <_  ( P  /  z ) ) )
6048, 59sylibrd 168 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  <_  1 ) )
61 nnle1eq1 8881 . . . . . . . . . . 11  |-  ( z  e.  NN  ->  (
z  <_  1  <->  z  = 
1 ) )
6261ad2antrl 482 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( z  <_ 
1  <->  z  =  1 ) )
6360, 62sylibd 148 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  ( P  /  z
)  ->  z  = 
1 ) )
64 nnnn0 9121 . . . . . . . . . . . . 13  |-  ( z  e.  NN  ->  z  e.  NN0 )
6564ad2antrl 482 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  z  e.  NN0 )
6665adantr 274 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  e.  NN0 )
67 nnnn0 9121 . . . . . . . . . . . . 13  |-  ( P  e.  NN  ->  P  e.  NN0 )
689, 67syl 14 . . . . . . . . . . . 12  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  P  e.  NN0 )
6968adantr 274 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  e.  NN0 )
70 simplrr 526 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  ||  P )
71 simpr 109 . . . . . . . . . . 11  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  P  ||  z )
72 dvdseq 11786 . . . . . . . . . . 11  |-  ( ( ( z  e.  NN0  /\  P  e.  NN0 )  /\  ( z  ||  P  /\  P  ||  z ) )  ->  z  =  P )
7366, 69, 70, 71, 72syl22anc 1229 . . . . . . . . . 10  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  P  ||  z )  ->  z  =  P )
7473ex 114 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( P  ||  z  ->  z  =  P ) )
7563, 74orim12d 776 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
z  e.  NN  /\  z  ||  P ) )  ->  ( ( P 
||  ( P  / 
z )  \/  P  ||  z )  ->  (
z  =  1  \/  z  =  P ) ) )
7675imp 123 . . . . . . 7  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  ( P 
||  ( P  / 
z )  \/  P  ||  z ) )  -> 
( z  =  1  \/  z  =  P ) )
7743, 76syldan 280 . . . . . 6  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  ( z  e.  NN  /\  z  ||  P ) )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  ( z  =  1  \/  z  =  P ) )
7877an32s 558 . . . . 5  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  ( z  e.  NN  /\  z  ||  P ) )  -> 
( z  =  1  \/  z  =  P ) )
7978expr 373 . . . 4  |-  ( ( ( P  e.  (
ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) )  /\  z  e.  NN )  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
8079ralrimiva 2539 . . 3  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )
81 isprm2 12049 . . 3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
827, 80, 81sylanbrc 414 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y
)  ->  ( P  ||  x  \/  P  ||  y ) ) )  ->  P  e.  Prime )
836, 82impbii 125 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. x  e.  ZZ  A. y  e.  ZZ  ( P  ||  ( x  x.  y )  ->  ( P  ||  x  \/  P  ||  y ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   A.wral 2444   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479    / cdiv 8568   NNcn 8857   2c2 8908   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589    || cdvds 11727   Primecprime 12039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-1o 6384  df-2o 6385  df-er 6501  df-en 6707  df-sup 6949  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-prm 12040
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator