| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2gv | Unicode version | ||
| Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.) |
| Ref | Expression |
|---|---|
| rspc2gv.1 |
|
| Ref | Expression |
|---|---|
| rspc2gv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2480 |
. 2
| |
| 2 | df-ral 2480 |
. . . . 5
| |
| 3 | 2 | imbi2i 226 |
. . . 4
|
| 4 | 3 | albii 1484 |
. . 3
|
| 5 | 19.21v 1887 |
. . . . . 6
| |
| 6 | 5 | bicomi 132 |
. . . . 5
|
| 7 | 6 | albii 1484 |
. . . 4
|
| 8 | impexp 263 |
. . . . . . 7
| |
| 9 | eleq1 2259 |
. . . . . . . . 9
| |
| 10 | eleq1 2259 |
. . . . . . . . 9
| |
| 11 | 9, 10 | bi2anan9 606 |
. . . . . . . 8
|
| 12 | rspc2gv.1 |
. . . . . . . 8
| |
| 13 | 11, 12 | imbi12d 234 |
. . . . . . 7
|
| 14 | 8, 13 | bitr3id 194 |
. . . . . 6
|
| 15 | 14 | spc2gv 2855 |
. . . . 5
|
| 16 | 15 | pm2.43a 51 |
. . . 4
|
| 17 | 7, 16 | biimtrid 152 |
. . 3
|
| 18 | 4, 17 | biimtrid 152 |
. 2
|
| 19 | 1, 18 | biimtrid 152 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-v 2765 |
| This theorem is referenced by: difinfsnlem 7174 difinfsn 7175 seqvalcd 10570 seqovcd 10576 qtopbasss 14841 apdiff 15779 |
| Copyright terms: Public domain | W3C validator |