| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspc2gv | Unicode version | ||
| Description: Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| rspc2gv.1 | 
 | 
| Ref | Expression | 
|---|---|
| rspc2gv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-ral 2480 | 
. 2
 | |
| 2 | df-ral 2480 | 
. . . . 5
 | |
| 3 | 2 | imbi2i 226 | 
. . . 4
 | 
| 4 | 3 | albii 1484 | 
. . 3
 | 
| 5 | 19.21v 1887 | 
. . . . . 6
 | |
| 6 | 5 | bicomi 132 | 
. . . . 5
 | 
| 7 | 6 | albii 1484 | 
. . . 4
 | 
| 8 | impexp 263 | 
. . . . . . 7
 | |
| 9 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 10 | eleq1 2259 | 
. . . . . . . . 9
 | |
| 11 | 9, 10 | bi2anan9 606 | 
. . . . . . . 8
 | 
| 12 | rspc2gv.1 | 
. . . . . . . 8
 | |
| 13 | 11, 12 | imbi12d 234 | 
. . . . . . 7
 | 
| 14 | 8, 13 | bitr3id 194 | 
. . . . . 6
 | 
| 15 | 14 | spc2gv 2855 | 
. . . . 5
 | 
| 16 | 15 | pm2.43a 51 | 
. . . 4
 | 
| 17 | 7, 16 | biimtrid 152 | 
. . 3
 | 
| 18 | 4, 17 | biimtrid 152 | 
. 2
 | 
| 19 | 1, 18 | biimtrid 152 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-ral 2480 df-v 2765 | 
| This theorem is referenced by: difinfsnlem 7165 difinfsn 7166 seqvalcd 10553 seqovcd 10559 qtopbasss 14757 apdiff 15692 | 
| Copyright terms: Public domain | W3C validator |