ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd Unicode version

Theorem seqovcd 10541
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10542 and seq1cd 10543 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
seqovcd.pl  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
Assertion
Ref Expression
seqovcd  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Distinct variable groups:    x,  .+ , y, w, z    x, C, y, w, z    x, D, y    x, F, w, z    x, M, w, z    ph, x, y
Allowed substitution hints:    ph( z, w)    D( z, w)    F( y)    M( y)

Proof of Theorem seqovcd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  x  e.  ( ZZ>= `  M )
)
2 simprr 531 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  y  e.  C )
3 seqovcd.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
43ralrimivva 2576 . . . . . 6  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C )
5 oveq1 5926 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .+  y )  =  ( a  .+  y ) )
65eleq1d 2262 . . . . . . 7  |-  ( x  =  a  ->  (
( x  .+  y
)  e.  C  <->  ( a  .+  y )  e.  C
) )
7 oveq2 5927 . . . . . . . 8  |-  ( y  =  b  ->  (
a  .+  y )  =  ( a  .+  b ) )
87eleq1d 2262 . . . . . . 7  |-  ( y  =  b  ->  (
( a  .+  y
)  e.  C  <->  ( a  .+  b )  e.  C
) )
96, 8cbvral2v 2739 . . . . . 6  |-  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  <->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
104, 9sylib 122 . . . . 5  |-  ( ph  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C
)
12 fveq2 5555 . . . . . . 7  |-  ( a  =  ( x  + 
1 )  ->  ( F `  a )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2262 . . . . . 6  |-  ( a  =  ( x  + 
1 )  ->  (
( F `  a
)  e.  D  <->  ( F `  ( x  +  1 ) )  e.  D
) )
14 seqovcd.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
1514ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
16 fveq2 5555 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1716eleq1d 2262 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  D  <->  ( F `  a )  e.  D
) )
1817cbvralv 2726 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 x )  e.  D  <->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
1915, 18sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
2019adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
21 eluzp1p1 9621 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
221, 21syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
2313, 20, 22rspcdva 2870 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( F `  ( x  +  1 ) )  e.  D )
24 oveq12 5928 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( a  .+  b
)  =  ( y 
.+  ( F `  ( x  +  1
) ) ) )
2524eleq1d 2262 . . . . . 6  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( ( a  .+  b )  e.  C  <->  ( y  .+  ( F `
 ( x  + 
1 ) ) )  e.  C ) )
2625rspc2gv 2877 . . . . 5  |-  ( ( y  e.  C  /\  ( F `  ( x  +  1 ) )  e.  D )  -> 
( A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C  ->  ( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
272, 23, 26syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C  -> 
( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
2811, 27mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )
29 fvoveq1 5942 . . . . 5  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3029oveq2d 5935 . . . 4  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
31 oveq1 5926 . . . 4  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
32 eqid 2193 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3330, 31, 32ovmpog 6054 . . 3  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  C  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
341, 2, 28, 33syl3anc 1249 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3534, 28eqeltrd 2270 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5255  (class class class)co 5919    e. cmpo 5921   1c1 7875    + caddc 7877   ZZ>=cuz 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  seqf2  10542  seq1cd  10543  seqp1cd  10544
  Copyright terms: Public domain W3C validator