ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd Unicode version

Theorem seqovcd 10449
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10450 and seq1cd 10451 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
seqovcd.pl  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
Assertion
Ref Expression
seqovcd  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Distinct variable groups:    x,  .+ , y, w, z    x, C, y, w, z    x, D, y    x, F, w, z    x, M, w, z    ph, x, y
Allowed substitution hints:    ph( z, w)    D( z, w)    F( y)    M( y)

Proof of Theorem seqovcd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  x  e.  ( ZZ>= `  M )
)
2 simprr 531 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  y  e.  C )
3 seqovcd.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
43ralrimivva 2559 . . . . . 6  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C )
5 oveq1 5876 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .+  y )  =  ( a  .+  y ) )
65eleq1d 2246 . . . . . . 7  |-  ( x  =  a  ->  (
( x  .+  y
)  e.  C  <->  ( a  .+  y )  e.  C
) )
7 oveq2 5877 . . . . . . . 8  |-  ( y  =  b  ->  (
a  .+  y )  =  ( a  .+  b ) )
87eleq1d 2246 . . . . . . 7  |-  ( y  =  b  ->  (
( a  .+  y
)  e.  C  <->  ( a  .+  b )  e.  C
) )
96, 8cbvral2v 2716 . . . . . 6  |-  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  <->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
104, 9sylib 122 . . . . 5  |-  ( ph  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C
)
12 fveq2 5511 . . . . . . 7  |-  ( a  =  ( x  + 
1 )  ->  ( F `  a )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2246 . . . . . 6  |-  ( a  =  ( x  + 
1 )  ->  (
( F `  a
)  e.  D  <->  ( F `  ( x  +  1 ) )  e.  D
) )
14 seqovcd.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
1514ralrimiva 2550 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
16 fveq2 5511 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1716eleq1d 2246 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  D  <->  ( F `  a )  e.  D
) )
1817cbvralv 2703 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 x )  e.  D  <->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
1915, 18sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
2019adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
21 eluzp1p1 9542 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
221, 21syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
2313, 20, 22rspcdva 2846 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( F `  ( x  +  1 ) )  e.  D )
24 oveq12 5878 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( a  .+  b
)  =  ( y 
.+  ( F `  ( x  +  1
) ) ) )
2524eleq1d 2246 . . . . . 6  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( ( a  .+  b )  e.  C  <->  ( y  .+  ( F `
 ( x  + 
1 ) ) )  e.  C ) )
2625rspc2gv 2853 . . . . 5  |-  ( ( y  e.  C  /\  ( F `  ( x  +  1 ) )  e.  D )  -> 
( A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C  ->  ( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
272, 23, 26syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C  -> 
( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
2811, 27mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )
29 fvoveq1 5892 . . . . 5  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3029oveq2d 5885 . . . 4  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
31 oveq1 5876 . . . 4  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
32 eqid 2177 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3330, 31, 32ovmpog 6003 . . 3  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  C  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
341, 2, 28, 33syl3anc 1238 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3534, 28eqeltrd 2254 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   ` cfv 5212  (class class class)co 5869    e. cmpo 5871   1c1 7803    + caddc 7805   ZZ>=cuz 9517
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-addass 7904  ax-distr 7906  ax-i2m1 7907  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4290  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518
This theorem is referenced by:  seqf2  10450  seq1cd  10451  seqp1cd  10452
  Copyright terms: Public domain W3C validator