Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqovcd | Unicode version |
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10407 and seq1cd 10408 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.) |
Ref | Expression |
---|---|
seqovcd.f | |
seqovcd.pl |
Ref | Expression |
---|---|
seqovcd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 526 | . . 3 | |
2 | simprr 527 | . . 3 | |
3 | seqovcd.pl | . . . . . . 7 | |
4 | 3 | ralrimivva 2552 | . . . . . 6 |
5 | oveq1 5857 | . . . . . . . 8 | |
6 | 5 | eleq1d 2239 | . . . . . . 7 |
7 | oveq2 5858 | . . . . . . . 8 | |
8 | 7 | eleq1d 2239 | . . . . . . 7 |
9 | 6, 8 | cbvral2v 2709 | . . . . . 6 |
10 | 4, 9 | sylib 121 | . . . . 5 |
11 | 10 | adantr 274 | . . . 4 |
12 | fveq2 5494 | . . . . . . 7 | |
13 | 12 | eleq1d 2239 | . . . . . 6 |
14 | seqovcd.f | . . . . . . . . 9 | |
15 | 14 | ralrimiva 2543 | . . . . . . . 8 |
16 | fveq2 5494 | . . . . . . . . . 10 | |
17 | 16 | eleq1d 2239 | . . . . . . . . 9 |
18 | 17 | cbvralv 2696 | . . . . . . . 8 |
19 | 15, 18 | sylib 121 | . . . . . . 7 |
20 | 19 | adantr 274 | . . . . . 6 |
21 | eluzp1p1 9499 | . . . . . . 7 | |
22 | 1, 21 | syl 14 | . . . . . 6 |
23 | 13, 20, 22 | rspcdva 2839 | . . . . 5 |
24 | oveq12 5859 | . . . . . . 7 | |
25 | 24 | eleq1d 2239 | . . . . . 6 |
26 | 25 | rspc2gv 2846 | . . . . 5 |
27 | 2, 23, 26 | syl2anc 409 | . . . 4 |
28 | 11, 27 | mpd 13 | . . 3 |
29 | fvoveq1 5873 | . . . . 5 | |
30 | 29 | oveq2d 5866 | . . . 4 |
31 | oveq1 5857 | . . . 4 | |
32 | eqid 2170 | . . . 4 | |
33 | 30, 31, 32 | ovmpog 5984 | . . 3 |
34 | 1, 2, 28, 33 | syl3anc 1233 | . 2 |
35 | 34, 28 | eqeltrd 2247 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cfv 5196 (class class class)co 5850 cmpo 5852 c1 7762 caddc 7764 cuz 9474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-addass 7863 ax-distr 7865 ax-i2m1 7866 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 df-uz 9475 |
This theorem is referenced by: seqf2 10407 seq1cd 10408 seqp1cd 10409 |
Copyright terms: Public domain | W3C validator |