ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd Unicode version

Theorem seqovcd 10538
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10539 and seq1cd 10540 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
seqovcd.pl  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
Assertion
Ref Expression
seqovcd  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Distinct variable groups:    x,  .+ , y, w, z    x, C, y, w, z    x, D, y    x, F, w, z    x, M, w, z    ph, x, y
Allowed substitution hints:    ph( z, w)    D( z, w)    F( y)    M( y)

Proof of Theorem seqovcd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  x  e.  ( ZZ>= `  M )
)
2 simprr 531 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  y  e.  C )
3 seqovcd.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
43ralrimivva 2576 . . . . . 6  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C )
5 oveq1 5925 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .+  y )  =  ( a  .+  y ) )
65eleq1d 2262 . . . . . . 7  |-  ( x  =  a  ->  (
( x  .+  y
)  e.  C  <->  ( a  .+  y )  e.  C
) )
7 oveq2 5926 . . . . . . . 8  |-  ( y  =  b  ->  (
a  .+  y )  =  ( a  .+  b ) )
87eleq1d 2262 . . . . . . 7  |-  ( y  =  b  ->  (
( a  .+  y
)  e.  C  <->  ( a  .+  b )  e.  C
) )
96, 8cbvral2v 2739 . . . . . 6  |-  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  <->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
104, 9sylib 122 . . . . 5  |-  ( ph  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
1110adantr 276 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C
)
12 fveq2 5554 . . . . . . 7  |-  ( a  =  ( x  + 
1 )  ->  ( F `  a )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2262 . . . . . 6  |-  ( a  =  ( x  + 
1 )  ->  (
( F `  a
)  e.  D  <->  ( F `  ( x  +  1 ) )  e.  D
) )
14 seqovcd.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
1514ralrimiva 2567 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
16 fveq2 5554 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1716eleq1d 2262 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  D  <->  ( F `  a )  e.  D
) )
1817cbvralv 2726 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 x )  e.  D  <->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
1915, 18sylib 122 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
2019adantr 276 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
21 eluzp1p1 9618 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
221, 21syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
2313, 20, 22rspcdva 2869 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( F `  ( x  +  1 ) )  e.  D )
24 oveq12 5927 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( a  .+  b
)  =  ( y 
.+  ( F `  ( x  +  1
) ) ) )
2524eleq1d 2262 . . . . . 6  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( ( a  .+  b )  e.  C  <->  ( y  .+  ( F `
 ( x  + 
1 ) ) )  e.  C ) )
2625rspc2gv 2876 . . . . 5  |-  ( ( y  e.  C  /\  ( F `  ( x  +  1 ) )  e.  D )  -> 
( A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C  ->  ( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
272, 23, 26syl2anc 411 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C  -> 
( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
2811, 27mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )
29 fvoveq1 5941 . . . . 5  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3029oveq2d 5934 . . . 4  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
31 oveq1 5925 . . . 4  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
32 eqid 2193 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3330, 31, 32ovmpog 6053 . . 3  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  C  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
341, 2, 28, 33syl3anc 1249 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3534, 28eqeltrd 2270 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   1c1 7873    + caddc 7875   ZZ>=cuz 9592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-distr 7976  ax-i2m1 7977  ax-0id 7980  ax-rnegex 7981  ax-cnre 7983  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-inn 8983  df-n0 9241  df-z 9318  df-uz 9593
This theorem is referenced by:  seqf2  10539  seq1cd  10540  seqp1cd  10541
  Copyright terms: Public domain W3C validator