ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqovcd Unicode version

Theorem seqovcd 10398
Description: A closure law for the recursive sequence builder. This is a lemma for theorems such as seqf2 10399 and seq1cd 10400 and is unlikely to be needed once such theorems are proved. (Contributed by Jim Kingdon, 20-Jul-2023.)
Hypotheses
Ref Expression
seqovcd.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
seqovcd.pl  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
Assertion
Ref Expression
seqovcd  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Distinct variable groups:    x,  .+ , y, w, z    x, C, y, w, z    x, D, y    x, F, w, z    x, M, w, z    ph, x, y
Allowed substitution hints:    ph( z, w)    D( z, w)    F( y)    M( y)

Proof of Theorem seqovcd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 521 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  x  e.  ( ZZ>= `  M )
)
2 simprr 522 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  y  e.  C )
3 seqovcd.pl . . . . . . 7  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
43ralrimivva 2548 . . . . . 6  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C )
5 oveq1 5849 . . . . . . . 8  |-  ( x  =  a  ->  (
x  .+  y )  =  ( a  .+  y ) )
65eleq1d 2235 . . . . . . 7  |-  ( x  =  a  ->  (
( x  .+  y
)  e.  C  <->  ( a  .+  y )  e.  C
) )
7 oveq2 5850 . . . . . . . 8  |-  ( y  =  b  ->  (
a  .+  y )  =  ( a  .+  b ) )
87eleq1d 2235 . . . . . . 7  |-  ( y  =  b  ->  (
( a  .+  y
)  e.  C  <->  ( a  .+  b )  e.  C
) )
96, 8cbvral2v 2705 . . . . . 6  |-  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  <->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
104, 9sylib 121 . . . . 5  |-  ( ph  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
1110adantr 274 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C
)
12 fveq2 5486 . . . . . . 7  |-  ( a  =  ( x  + 
1 )  ->  ( F `  a )  =  ( F `  ( x  +  1
) ) )
1312eleq1d 2235 . . . . . 6  |-  ( a  =  ( x  + 
1 )  ->  (
( F `  a
)  e.  D  <->  ( F `  ( x  +  1 ) )  e.  D
) )
14 seqovcd.f . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
1514ralrimiva 2539 . . . . . . . 8  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
16 fveq2 5486 . . . . . . . . . 10  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
1716eleq1d 2235 . . . . . . . . 9  |-  ( x  =  a  ->  (
( F `  x
)  e.  D  <->  ( F `  a )  e.  D
) )
1817cbvralv 2692 . . . . . . . 8  |-  ( A. x  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 x )  e.  D  <->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
1915, 18sylib 121 . . . . . . 7  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
2019adantr 274 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
21 eluzp1p1 9491 . . . . . . 7  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
221, 21syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
2313, 20, 22rspcdva 2835 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( F `  ( x  +  1 ) )  e.  D )
24 oveq12 5851 . . . . . . 7  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( a  .+  b
)  =  ( y 
.+  ( F `  ( x  +  1
) ) ) )
2524eleq1d 2235 . . . . . 6  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( ( a  .+  b )  e.  C  <->  ( y  .+  ( F `
 ( x  + 
1 ) ) )  e.  C ) )
2625rspc2gv 2842 . . . . 5  |-  ( ( y  e.  C  /\  ( F `  ( x  +  1 ) )  e.  D )  -> 
( A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C  ->  ( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
272, 23, 26syl2anc 409 . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C  -> 
( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
2811, 27mpd 13 . . 3  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )
29 fvoveq1 5865 . . . . 5  |-  ( z  =  x  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
3029oveq2d 5858 . . . 4  |-  ( z  =  x  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( w  .+  ( F `  ( x  +  1 ) ) ) )
31 oveq1 5849 . . . 4  |-  ( w  =  y  ->  (
w  .+  ( F `  ( x  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
32 eqid 2165 . . . 4  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
3330, 31, 32ovmpog 5976 . . 3  |-  ( ( x  e.  ( ZZ>= `  M )  /\  y  e.  C  /\  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
341, 2, 28, 33syl3anc 1228 . 2  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
3534, 28eqeltrd 2243 1  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   A.wral 2444   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   1c1 7754    + caddc 7756   ZZ>=cuz 9466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-addass 7855  ax-distr 7857  ax-i2m1 7858  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467
This theorem is referenced by:  seqf2  10399  seq1cd  10400  seqp1cd  10401
  Copyright terms: Public domain W3C validator