| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1551 |
. 2
| |
| 2 | nfv 1551 |
. 2
| |
| 3 | rspc2v.1 |
. 2
| |
| 4 | rspc2v.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | rspc2 2888 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 |
| This theorem is referenced by: rspc2va 2891 rspc3v 2893 disji2 4037 ontriexmidim 4571 wetriext 4626 f1veqaeq 5840 isorel 5879 oveqrspc2v 5973 fovcld 6052 caovclg 6101 caovcomg 6104 smoel 6388 dcdifsnid 6592 unfiexmid 7017 prfidceq 7027 fiintim 7030 supmoti 7097 supsnti 7109 isotilem 7110 onntri35 7351 onntri45 7355 cauappcvgprlem1 7774 caucvgprlemnkj 7781 caucvgprlemnbj 7782 caucvgprprlemval 7803 ltordlem 8557 frecuzrdgrrn 10555 frec2uzrdg 10556 frecuzrdgrcl 10557 frecuzrdgrclt 10562 seq3caopr3 10638 seq3homo 10674 seqhomog 10677 climcn2 11653 fprodcl2lem 11949 ennnfonelemim 12828 mhmlin 13332 issubg2m 13558 nsgbi 13573 ghmlin 13617 issubrng2 14005 issubrg2 14036 lmodlema 14087 islmodd 14088 rmodislmodlem 14145 rmodislmod 14146 rnglidlmcl 14275 inopn 14508 basis1 14552 basis2 14553 xmeteq0 14864 cncfi 15083 limccnp2lem 15181 logltb 15379 2sqlem8 15633 redcwlpo 16031 redc0 16033 reap0 16034 |
| Copyright terms: Public domain | W3C validator |