| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1552 |
. 2
| |
| 2 | nfv 1552 |
. 2
| |
| 3 | rspc2v.1 |
. 2
| |
| 4 | rspc2v.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | rspc2 2895 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 |
| This theorem is referenced by: rspc2va 2898 rspc3v 2900 disji2 4051 ontriexmidim 4588 wetriext 4643 f1veqaeq 5861 isorel 5900 oveqrspc2v 5994 fovcld 6073 caovclg 6122 caovcomg 6125 smoel 6409 dcdifsnid 6613 unfiexmid 7041 prfidceq 7051 fiintim 7054 supmoti 7121 supsnti 7133 isotilem 7134 onntri35 7383 onntri45 7387 cauappcvgprlem1 7807 caucvgprlemnkj 7814 caucvgprlemnbj 7815 caucvgprprlemval 7836 ltordlem 8590 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgrclt 10597 seq3caopr3 10673 seq3homo 10709 seqhomog 10712 climcn2 11735 fprodcl2lem 12031 ennnfonelemim 12910 mhmlin 13414 issubg2m 13640 nsgbi 13655 ghmlin 13699 issubrng2 14087 issubrg2 14118 lmodlema 14169 islmodd 14170 rmodislmodlem 14227 rmodislmod 14228 rnglidlmcl 14357 inopn 14590 basis1 14634 basis2 14635 xmeteq0 14946 cncfi 15165 limccnp2lem 15263 logltb 15461 2sqlem8 15715 redcwlpo 16196 redc0 16198 reap0 16199 |
| Copyright terms: Public domain | W3C validator |