| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rspc2v | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) | 
| Ref | Expression | 
|---|---|
| rspc2v.1 | 
 | 
| rspc2v.2 | 
 | 
| Ref | Expression | 
|---|---|
| rspc2v | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfv 1542 | 
. 2
 | |
| 2 | nfv 1542 | 
. 2
 | |
| 3 | rspc2v.1 | 
. 2
 | |
| 4 | rspc2v.2 | 
. 2
 | |
| 5 | 1, 2, 3, 4 | rspc2 2879 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 | 
| This theorem is referenced by: rspc2va 2882 rspc3v 2884 disji2 4026 ontriexmidim 4558 wetriext 4613 f1veqaeq 5816 isorel 5855 oveqrspc2v 5949 fovcld 6027 caovclg 6076 caovcomg 6079 smoel 6358 dcdifsnid 6562 unfiexmid 6979 prfidceq 6989 fiintim 6992 supmoti 7059 supsnti 7071 isotilem 7072 onntri35 7304 onntri45 7308 cauappcvgprlem1 7726 caucvgprlemnkj 7733 caucvgprlemnbj 7734 caucvgprprlemval 7755 ltordlem 8509 frecuzrdgrrn 10500 frec2uzrdg 10501 frecuzrdgrcl 10502 frecuzrdgrclt 10507 seq3caopr3 10583 seq3homo 10619 seqhomog 10622 climcn2 11474 fprodcl2lem 11770 ennnfonelemim 12641 mhmlin 13099 issubg2m 13319 nsgbi 13334 ghmlin 13378 issubrng2 13766 issubrg2 13797 lmodlema 13848 islmodd 13849 rmodislmodlem 13906 rmodislmod 13907 rnglidlmcl 14036 inopn 14239 basis1 14283 basis2 14284 xmeteq0 14595 cncfi 14814 limccnp2lem 14912 logltb 15110 2sqlem8 15364 redcwlpo 15699 redc0 15701 reap0 15702 | 
| Copyright terms: Public domain | W3C validator |