![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rspc2v | Unicode version |
Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
Ref | Expression |
---|---|
rspc2v.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
rspc2v.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
rspc2v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1528 |
. 2
![]() ![]() ![]() ![]() | |
2 | nfv 1528 |
. 2
![]() ![]() ![]() ![]() | |
3 | rspc2v.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | rspc2v.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | rspc2 2852 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2739 |
This theorem is referenced by: rspc2va 2855 rspc3v 2857 disji2 3996 ontriexmidim 4521 wetriext 4576 f1veqaeq 5769 isorel 5808 oveqrspc2v 5901 fovcl 5979 caovclg 6026 caovcomg 6029 smoel 6300 dcdifsnid 6504 unfiexmid 6916 fiintim 6927 supmoti 6991 supsnti 7003 isotilem 7004 onntri35 7235 onntri45 7239 cauappcvgprlem1 7657 caucvgprlemnkj 7664 caucvgprlemnbj 7665 caucvgprprlemval 7686 ltordlem 8438 frecuzrdgrrn 10407 frec2uzrdg 10408 frecuzrdgrcl 10409 frecuzrdgrclt 10414 seq3caopr3 10480 seq3homo 10509 climcn2 11316 fprodcl2lem 11612 ennnfonelemim 12424 mhmlin 12857 issubg2m 13047 nsgbi 13062 issubrg2 13360 lmodlema 13380 islmodd 13381 inopn 13473 basis1 13517 basis2 13518 xmeteq0 13829 cncfi 14035 limccnp2lem 14115 logltb 14265 2sqlem8 14440 redcwlpo 14773 redc0 14775 reap0 14776 |
Copyright terms: Public domain | W3C validator |