| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspc2v | Unicode version | ||
| Description: 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
| Ref | Expression |
|---|---|
| rspc2v.1 |
|
| rspc2v.2 |
|
| Ref | Expression |
|---|---|
| rspc2v |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1574 |
. 2
| |
| 2 | nfv 1574 |
. 2
| |
| 3 | rspc2v.1 |
. 2
| |
| 4 | rspc2v.2 |
. 2
| |
| 5 | 1, 2, 3, 4 | rspc2 2918 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 |
| This theorem is referenced by: rspc2va 2921 rspc3v 2923 disji2 4075 ontriexmidim 4614 wetriext 4669 f1veqaeq 5893 isorel 5932 oveqrspc2v 6028 fovcld 6109 caovclg 6158 caovcomg 6161 smoel 6446 dcdifsnid 6650 unfiexmid 7080 prfidceq 7090 fiintim 7093 supmoti 7160 supsnti 7172 isotilem 7173 onntri35 7422 onntri45 7426 cauappcvgprlem1 7846 caucvgprlemnkj 7853 caucvgprlemnbj 7854 caucvgprprlemval 7875 ltordlem 8629 frecuzrdgrrn 10630 frec2uzrdg 10631 frecuzrdgrcl 10632 frecuzrdgrclt 10637 seq3caopr3 10713 seq3homo 10749 seqhomog 10752 climcn2 11820 fprodcl2lem 12116 ennnfonelemim 12995 mhmlin 13500 issubg2m 13726 nsgbi 13741 ghmlin 13785 issubrng2 14174 issubrg2 14205 lmodlema 14256 islmodd 14257 rmodislmodlem 14314 rmodislmod 14315 rnglidlmcl 14444 inopn 14677 basis1 14721 basis2 14722 xmeteq0 15033 cncfi 15252 limccnp2lem 15350 logltb 15548 2sqlem8 15802 redcwlpo 16423 redc0 16425 reap0 16426 |
| Copyright terms: Public domain | W3C validator |