ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqvalcd Unicode version

Theorem seqvalcd 10262
Description: Value of the sequence builder function. Similar to seq3val 10261 but the classes  D (type of each term) and  C (type of the value we are accumulating) do not need to be the same. (Contributed by Jim Kingdon, 9-Jul-2023.)
Hypotheses
Ref Expression
seqvalcd.m  |-  ( ph  ->  M  e.  ZZ )
seqvalcd.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
seqvalcd.f0  |-  ( ph  ->  ( F `  M
)  e.  C )
seqvalcd.pl  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
seqvalcd.fp1  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
Assertion
Ref Expression
seqvalcd  |-  ( ph  ->  seq M (  .+  ,  F )  =  ran  R )
Distinct variable groups:    x,  .+ , y, w, z    x, C, y, w, z    x, D, y    x, F, y, w, z    x, M, y, w, z    x, R, y, w, z    ph, x, y, w, z
Allowed substitution hints:    D( z, w)

Proof of Theorem seqvalcd
Dummy variables  a  b  c  k  n  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-seqfrec 10249 . 2  |-  seq M
(  .+  ,  F
)  =  ran frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )
2 seqvalcd.m . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
3 seqvalcd.f0 . . . . . 6  |-  ( ph  ->  ( F `  M
)  e.  C )
4 ssv 3123 . . . . . . 7  |-  C  C_  _V
54a1i 9 . . . . . 6  |-  ( ph  ->  C  C_  _V )
6 eqidd 2141 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) )
7 simprr 522 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  w  =  y )
8 simprl 521 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  z  =  x )
98fvoveq1d 5803 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( x  +  1
) ) )
107, 9oveq12d 5799 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  ( ZZ>= `  M )  /\  y  e.  C ) )  /\  ( z  =  x  /\  w  =  y ) )  ->  (
w  .+  ( F `  ( z  +  1 ) ) )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
11 simprl 521 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  x  e.  ( ZZ>= `  M )
)
12 simprr 522 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  y  e.  C )
13 seqvalcd.pl . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  C  /\  y  e.  D ) )  -> 
( x  .+  y
)  e.  C )
1413ralrimivva 2517 . . . . . . . . . . 11  |-  ( ph  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C )
15 oveq1 5788 . . . . . . . . . . . . 13  |-  ( x  =  a  ->  (
x  .+  y )  =  ( a  .+  y ) )
1615eleq1d 2209 . . . . . . . . . . . 12  |-  ( x  =  a  ->  (
( x  .+  y
)  e.  C  <->  ( a  .+  y )  e.  C
) )
17 oveq2 5789 . . . . . . . . . . . . 13  |-  ( y  =  b  ->  (
a  .+  y )  =  ( a  .+  b ) )
1817eleq1d 2209 . . . . . . . . . . . 12  |-  ( y  =  b  ->  (
( a  .+  y
)  e.  C  <->  ( a  .+  b )  e.  C
) )
1916, 18cbvral2v 2668 . . . . . . . . . . 11  |-  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  <->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
2014, 19sylib 121 . . . . . . . . . 10  |-  ( ph  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C )
2120adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C
)
22 fveq2 5428 . . . . . . . . . . . 12  |-  ( a  =  ( x  + 
1 )  ->  ( F `  a )  =  ( F `  ( x  +  1
) ) )
2322eleq1d 2209 . . . . . . . . . . 11  |-  ( a  =  ( x  + 
1 )  ->  (
( F `  a
)  e.  D  <->  ( F `  ( x  +  1 ) )  e.  D
) )
24 seqvalcd.fp1 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( ZZ>= `  ( M  +  1 ) ) )  ->  ( F `  x )  e.  D
)
2524ralrimiva 2508 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  x )  e.  D )
26 fveq2 5428 . . . . . . . . . . . . . . 15  |-  ( x  =  a  ->  ( F `  x )  =  ( F `  a ) )
2726eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( x  =  a  ->  (
( F `  x
)  e.  D  <->  ( F `  a )  e.  D
) )
2827cbvralv 2657 . . . . . . . . . . . . 13  |-  ( A. x  e.  ( ZZ>= `  ( M  +  1
) ) ( F `
 x )  e.  D  <->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
2925, 28sylib 121 . . . . . . . . . . . 12  |-  ( ph  ->  A. a  e.  (
ZZ>= `  ( M  + 
1 ) ) ( F `  a )  e.  D )
3029adantr 274 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
31 eluzp1p1 9374 . . . . . . . . . . . 12  |-  ( x  e.  ( ZZ>= `  M
)  ->  ( x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3211, 31syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
3323, 30, 32rspcdva 2797 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( F `  ( x  +  1 ) )  e.  D )
34 oveq12 5790 . . . . . . . . . . . 12  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( a  .+  b
)  =  ( y 
.+  ( F `  ( x  +  1
) ) ) )
3534eleq1d 2209 . . . . . . . . . . 11  |-  ( ( a  =  y  /\  b  =  ( F `  ( x  +  1 ) ) )  -> 
( ( a  .+  b )  e.  C  <->  ( y  .+  ( F `
 ( x  + 
1 ) ) )  e.  C ) )
3635rspc2gv 2804 . . . . . . . . . 10  |-  ( ( y  e.  C  /\  ( F `  ( x  +  1 ) )  e.  D )  -> 
( A. a  e.  C  A. b  e.  D  ( a  .+  b )  e.  C  ->  ( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
3712, 33, 36syl2anc 409 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  ( A. a  e.  C  A. b  e.  D  ( a  .+  b
)  e.  C  -> 
( y  .+  ( F `  ( x  +  1 ) ) )  e.  C ) )
3821, 37mpd 13 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
y  .+  ( F `  ( x  +  1 ) ) )  e.  C )
396, 10, 11, 12, 38ovmpod 5905 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( y  .+  ( F `  ( x  +  1 ) ) ) )
4039, 38eqeltrd 2217 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  M )  /\  y  e.  C
) )  ->  (
x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )  e.  C )
41 seqvalcd.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. )
422, 3, 5, 40, 41frecuzrdgrclt 10218 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  M )  X.  C ) )
4342ffnd 5280 . . . 4  |-  ( ph  ->  R  Fn  om )
44 1st2nd2 6080 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  C
)  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
4544adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  u  =  <. ( 1st `  u
) ,  ( 2nd `  u ) >. )
4645fveq2d 5432 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  <. ( 1st `  u ) ,  ( 2nd `  u
) >. ) )
47 df-ov 5784 . . . . . . . . . 10  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
4846, 47eqtr4di 2191 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) ) )
49 xp1st 6070 . . . . . . . . . . 11  |-  ( u  e.  ( ( ZZ>= `  M )  X.  C
)  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
5049adantl 275 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( 1st `  u )  e.  (
ZZ>= `  M ) )
51 xp2nd 6071 . . . . . . . . . . . 12  |-  ( u  e.  ( ( ZZ>= `  M )  X.  C
)  ->  ( 2nd `  u )  e.  C
)
5251adantl 275 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( 2nd `  u )  e.  C
)
5352elexd 2702 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( 2nd `  u )  e.  _V )
54 peano2uz 9404 . . . . . . . . . . . 12  |-  ( ( 1st `  u )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
5550, 54syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  M ) )
5614adantr 274 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C
)
57 fveq2 5428 . . . . . . . . . . . . . . 15  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( F `  x )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
5857eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( x  =  ( ( 1st `  u )  +  1 )  ->  ( ( F `  x )  e.  D  <->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  D ) )
5925adantr 274 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  A. x  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  x
)  e.  D )
60 eluzp1p1 9374 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  u )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
6150, 60syl 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u )  +  1 )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
6258, 59, 61rspcdva 2797 . . . . . . . . . . . . 13  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( F `  ( ( 1st `  u
)  +  1 ) )  e.  D )
63 oveq12 5790 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( 2nd `  u )  /\  y  =  ( F `  ( ( 1st `  u
)  +  1 ) ) )  ->  (
x  .+  y )  =  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) ) )
6463eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( 2nd `  u )  /\  y  =  ( F `  ( ( 1st `  u
)  +  1 ) ) )  ->  (
( x  .+  y
)  e.  C  <->  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  C ) )
6564rspc2gv 2804 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  u
)  e.  C  /\  ( F `  ( ( 1st `  u )  +  1 ) )  e.  D )  -> 
( A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C  ->  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) )  e.  C
) )
6652, 62, 65syl2anc 409 . . . . . . . . . . . 12  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( A. x  e.  C  A. y  e.  D  (
x  .+  y )  e.  C  ->  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) )  e.  C
) )
6756, 66mpd 13 . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )  e.  C )
6855, 67opelxpd 4579 . . . . . . . . . 10  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  C ) )
69 oveq1 5788 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( x  +  1 )  =  ( ( 1st `  u
)  +  1 ) )
70 fvoveq1 5804 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  u
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
7170oveq2d 5797 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  u
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
7269, 71opeq12d 3720 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  u
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) ) >. )
73 oveq1 5788 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  u
)  ->  ( y  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
7473opeq2d 3719 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >. )
75 eqid 2140 . . . . . . . . . . 11  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. )
7672, 74, 75ovmpog 5912 . . . . . . . . . 10  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e. 
_V  /\  <. ( ( 1st `  u )  +  1 ) ,  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  C ) )  -> 
( ( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
7750, 53, 68, 76syl3anc 1217 . . . . . . . . 9  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ( 2nd `  u ) )  = 
<. ( ( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
7848, 77eqtrd 2173 . . . . . . . 8  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  =  <. (
( 1st `  u
)  +  1 ) ,  ( ( 2nd `  u )  .+  ( F `  ( ( 1st `  u )  +  1 ) ) )
>. )
7978, 68eqeltrd 2217 . . . . . . 7  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  C ) )
8079ralrimiva 2508 . . . . . 6  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  C ) )
81 uzid 9363 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
822, 81syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
8382, 3opelxpd 4579 . . . . . 6  |-  ( ph  -> 
<. M ,  ( F `
 M ) >.  e.  ( ( ZZ>= `  M
)  X.  C ) )
8480, 83jca 304 . . . . 5  |-  ( ph  ->  ( A. u  e.  ( ( ZZ>= `  M
)  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  C )  /\  <. M ,  ( F `  M )
>.  e.  ( ( ZZ>= `  M )  X.  C
) ) )
85 frecfcl 6309 . . . . 5  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  C )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  C ) )  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  C ) )
86 ffn 5279 . . . . 5  |-  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) : om --> ( ( ZZ>= `  M
)  X.  C )  -> frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. )  Fn  om )
8784, 85, 863syl 17 . . . 4  |-  ( ph  -> frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. )  Fn  om )
88 fveq2 5428 . . . . . . . 8  |-  ( c  =  (/)  ->  ( R `
 c )  =  ( R `  (/) ) )
89 fveq2 5428 . . . . . . . 8  |-  ( c  =  (/)  ->  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
9088, 89eqeq12d 2155 . . . . . . 7  |-  ( c  =  (/)  ->  ( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c )  <->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) )
9190imbi2d 229 . . . . . 6  |-  ( c  =  (/)  ->  ( (
ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) ) ) )
92 fveq2 5428 . . . . . . . 8  |-  ( c  =  k  ->  ( R `  c )  =  ( R `  k ) )
93 fveq2 5428 . . . . . . . 8  |-  ( c  =  k  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
9492, 93eqeq12d 2155 . . . . . . 7  |-  ( c  =  k  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
9594imbi2d 229 . . . . . 6  |-  ( c  =  k  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  k
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) ) )
96 fveq2 5428 . . . . . . . 8  |-  ( c  =  suc  k  -> 
( R `  c
)  =  ( R `
 suc  k )
)
97 fveq2 5428 . . . . . . . 8  |-  ( c  =  suc  k  -> 
(frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) )
9896, 97eqeq12d 2155 . . . . . . 7  |-  ( c  =  suc  k  -> 
( ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) )
9998imbi2d 229 . . . . . 6  |-  ( c  =  suc  k  -> 
( ( ph  ->  ( R `  c )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  c ) )  <->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
100 fveq2 5428 . . . . . . . 8  |-  ( c  =  n  ->  ( R `  c )  =  ( R `  n ) )
101 fveq2 5428 . . . . . . . 8  |-  ( c  =  n  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
102100, 101eqeq12d 2155 . . . . . . 7  |-  ( c  =  n  ->  (
( R `  c
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  c
)  <->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
103102imbi2d 229 . . . . . 6  |-  ( c  =  n  ->  (
( ph  ->  ( R `
 c )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  c
) )  <->  ( ph  ->  ( R `  n
)  =  (frec ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) ) )
10441fveq1i 5429 . . . . . . . 8  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )
105 frec0g 6301 . . . . . . . . 9  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  C )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
10683, 105syl 14 . . . . . . . 8  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
107104, 106syl5eq 2185 . . . . . . 7  |-  ( ph  ->  ( R `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
108 frec0g 6301 . . . . . . . 8  |-  ( <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  C )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
10983, 108syl 14 . . . . . . 7  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) )  = 
<. M ,  ( F `
 M ) >.
)
110107, 109eqtr4d 2176 . . . . . 6  |-  ( ph  ->  ( R `  (/) )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  (/) ) )
11142ad2antlr 481 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  R : om --> ( ( ZZ>= `  M )  X.  C
) )
112 simpll 519 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  k  e.  om )
113111, 112ffvelrnd 5563 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  e.  ( ( ZZ>= `  M
)  X.  C ) )
114 xp1st 6070 . . . . . . . . . . 11  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  C
)  ->  ( 1st `  ( R `  k
) )  e.  (
ZZ>= `  M ) )
115113, 114syl 14 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 1st `  ( R `  k ) )  e.  ( ZZ>= `  M )
)
116 xp2nd 6071 . . . . . . . . . . . 12  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  C
)  ->  ( 2nd `  ( R `  k
) )  e.  C
)
117113, 116syl 14 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e.  C )
118117elexd 2702 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( 2nd `  ( R `  k ) )  e. 
_V )
119 peano2uz 9404 . . . . . . . . . . . 12  |-  ( ( 1st `  ( R `
 k ) )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  ( R `  k ) )  +  1 )  e.  (
ZZ>= `  M ) )
120115, 119syl 14 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  M
) )
12114ad2antlr 481 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C
)
122 fveq2 5428 . . . . . . . . . . . . . . 15  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( F `  a )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
123122eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( a  =  ( ( 1st `  ( R `  k
) )  +  1 )  ->  ( ( F `  a )  e.  D  <->  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) )  e.  D ) )
12429ad2antlr 481 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. a  e.  ( ZZ>= `  ( M  +  1 ) ) ( F `  a
)  e.  D )
125 eluzp1p1 9374 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( R `
 k ) )  e.  ( ZZ>= `  M
)  ->  ( ( 1st `  ( R `  k ) )  +  1 )  e.  (
ZZ>= `  ( M  + 
1 ) ) )
126115, 125syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
)  +  1 )  e.  ( ZZ>= `  ( M  +  1 ) ) )
127123, 124, 126rspcdva 2797 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) )  e.  D )
128 oveq12 5790 . . . . . . . . . . . . . . 15  |-  ( ( x  =  ( 2nd `  ( R `  k
) )  /\  y  =  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  ->  (
x  .+  y )  =  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) ) )
129128eleq1d 2209 . . . . . . . . . . . . . 14  |-  ( ( x  =  ( 2nd `  ( R `  k
) )  /\  y  =  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  ->  (
( x  .+  y
)  e.  C  <->  ( ( 2nd `  ( R `  k ) )  .+  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )  e.  C ) )
130129rspc2gv 2804 . . . . . . . . . . . . 13  |-  ( ( ( 2nd `  ( R `  k )
)  e.  C  /\  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) )  e.  D )  -> 
( A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C  ->  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  C
) )
131117, 127, 130syl2anc 409 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( A. x  e.  C  A. y  e.  D  ( x  .+  y )  e.  C  ->  (
( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  C
) )
132121, 131mpd 13 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  C
)
133120, 132opelxpd 4579 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  e.  ( ( ZZ>= `  M )  X.  C
) )
134 oveq1 5788 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x  +  1 )  =  ( ( 1st `  ( R `  k )
)  +  1 ) )
135 fvoveq1 5804 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
136135oveq2d 5797 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( y  .+  ( F `  (
x  +  1 ) ) )  =  ( y  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
137134, 136opeq12d 3720 . . . . . . . . . . 11  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >.  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) ) >. )
138 oveq1 5788 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( y  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
139138opeq2d 3719 . . . . . . . . . . 11  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( y  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
140137, 139, 75ovmpog 5912 . . . . . . . . . 10  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e. 
_V  /\  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >.  e.  ( ( ZZ>= `  M )  X.  C ) )  -> 
( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
141115, 118, 133, 140syl3anc 1217 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 2nd `  ( R `  k
) )  .+  ( F `  ( ( 1st `  ( R `  k ) )  +  1 ) ) )
>. )
14280ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  C ) )
14383ad2antlr 481 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. M , 
( F `  M
) >.  e.  ( (
ZZ>= `  M )  X.  C ) )
144 frecsuc 6311 . . . . . . . . . . 11  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) `  u
)  e.  ( (
ZZ>= `  M )  X.  C )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  C )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
145142, 143, 112, 144syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
146 simpr 109 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )
147146fveq2d 5432 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
148 1st2nd2 6080 . . . . . . . . . . . . 13  |-  ( ( R `  k )  e.  ( ( ZZ>= `  M )  X.  C
)  ->  ( R `  k )  =  <. ( 1st `  ( R `
 k ) ) ,  ( 2nd `  ( R `  k )
) >. )
149113, 148syl 14 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  k )  =  <. ( 1st `  ( R `  k )
) ,  ( 2nd `  ( R `  k
) ) >. )
150149fveq2d 5432 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
151 df-ov 5784 . . . . . . . . . . 11  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
152150, 151eqtr4di 2191 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) `  ( R `  k ) )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
153145, 147, 1523eqtr2d 2179 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ( 2nd `  ( R `  k )
) ) )
15445fveq2d 5432 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. ) )
155 df-ov 5784 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 1st `  u ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  u ) ,  ( 2nd `  u )
>. )
156154, 155eqtr4di 2191 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  ( ( 1st `  u
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  u
) ) )
157 fvoveq1 5804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( z  =  ( 1st `  u
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  u )  +  1 ) ) )
158157oveq2d 5797 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  =  ( 1st `  u
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  u )  +  1 ) ) ) )
159 oveq1 5788 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( w  =  ( 2nd `  u
)  ->  ( w  .+  ( F `  (
( 1st `  u
)  +  1 ) ) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
160 eqid 2140 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) )  =  ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) )
161158, 159, 160ovmpog 5912 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e.  C  /\  ( ( 2nd `  u ) 
.+  ( F `  ( ( 1st `  u
)  +  1 ) ) )  e.  C
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
16250, 52, 67, 161syl3anc 1217 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  =  ( ( 2nd `  u
)  .+  ( F `  ( ( 1st `  u
)  +  1 ) ) ) )
163162, 67eqeltrd 2217 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u
) )  e.  C
)
16455, 163opelxpd 4579 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  C ) )
165 oveq1 5788 . . . . . . . . . . . . . . . . . . . . 21  |-  ( x  =  ( 1st `  u
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
16669, 165opeq12d 3720 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  ( 1st `  u
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
167 oveq2 5789 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  ( 2nd `  u
)  ->  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) )
168167opeq2d 3719 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  =  ( 2nd `  u
)  ->  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
169 eqid 2140 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )  =  (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
170166, 168, 169ovmpog 5912 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( 1st `  u
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  u )  e. 
_V  /\  <. ( ( 1st `  u )  +  1 ) ,  ( ( 1st `  u
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
17150, 53, 164, 170syl3anc 1217 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  u ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  u
) )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
172156, 171eqtrd 2173 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  =  <. ( ( 1st `  u
)  +  1 ) ,  ( ( 1st `  u ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  u ) ) >.
)
173172, 164eqeltrd 2217 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  u  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( (
x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  C ) )
174173ralrimiva 2508 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. u  e.  ( ( ZZ>= `  M )  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  C ) )
175174ad2antlr 481 . . . . . . . . . . . . . 14  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  A. u  e.  ( ( ZZ>= `  M
)  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  u )  e.  ( ( ZZ>= `  M
)  X.  C ) )
176 frecsuc 6311 . . . . . . . . . . . . . 14  |-  ( ( A. u  e.  ( ( ZZ>= `  M )  X.  C ) ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  u )  e.  ( ( ZZ>= `  M )  X.  C )  /\  <. M ,  ( F `  M ) >.  e.  ( ( ZZ>= `  M )  X.  C )  /\  k  e.  om )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
177175, 143, 112, 176syl3anc 1217 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) ) )
17841fveq1i 5429 . . . . . . . . . . . . 13  |-  ( R `
 suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k )
17941fveq1i 5429 . . . . . . . . . . . . . 14  |-  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)
180179fveq2i 5431 . . . . . . . . . . . . 13  |-  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. ) `  ( R `  k
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  (frec (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ,  <. M , 
( F `  M
) >. ) `  k
) )
181177, 178, 1803eqtr4g 2198 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  ( R `
 k ) ) )
182149fveq2d 5432 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  ( R `  k ) )  =  ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. ) )
183181, 182eqtrd 2173 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) `  <. ( 1st `  ( R `  k ) ) ,  ( 2nd `  ( R `  k )
) >. ) )
184 df-ov 5784 . . . . . . . . . . 11  |-  ( ( 1st `  ( R `
 k ) ) ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  ( ( x  e.  (
ZZ>= `  M ) ,  y  e.  _V  |->  <.
( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) `  <. ( 1st `  ( R `  k
) ) ,  ( 2nd `  ( R `
 k ) )
>. )
185183, 184eqtr4di 2191 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  ( ( 1st `  ( R `  k
) ) ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. ) ( 2nd `  ( R `  k )
) ) )
186 fvoveq1 5804 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( F `  ( z  +  1 ) )  =  ( F `  ( ( 1st `  ( R `
 k ) )  +  1 ) ) )
187186oveq2d 5797 . . . . . . . . . . . . . . 15  |-  ( z  =  ( 1st `  ( R `  k )
)  ->  ( w  .+  ( F `  (
z  +  1 ) ) )  =  ( w  .+  ( F `
 ( ( 1st `  ( R `  k
) )  +  1 ) ) ) )
188 oveq1 5788 . . . . . . . . . . . . . . 15  |-  ( w  =  ( 2nd `  ( R `  k )
)  ->  ( w  .+  ( F `  (
( 1st `  ( R `  k )
)  +  1 ) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
189187, 188, 160ovmpog 5912 . . . . . . . . . . . . . 14  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e.  C  /\  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) )  e.  C
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k )
) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
190115, 117, 132, 189syl3anc 1217 . . . . . . . . . . . . 13  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  =  ( ( 2nd `  ( R `  k )
)  .+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) )
191190, 132eqeltrd 2217 . . . . . . . . . . . 12  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) )  e.  C )
192120, 191opelxpd 4579 . . . . . . . . . . 11  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  C ) )
193 oveq1 5788 . . . . . . . . . . . . 13  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  ( x
( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y ) )
194134, 193opeq12d 3720 . . . . . . . . . . . 12  |-  ( x  =  ( 1st `  ( R `  k )
)  ->  <. ( x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>. )
195 oveq2 5789 . . . . . . . . . . . . 13  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  ( ( 1st `  ( R `  k ) ) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y )  =  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) )
196195opeq2d 3719 . . . . . . . . . . . 12  |-  ( y  =  ( 2nd `  ( R `  k )
)  ->  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) y )
>.  =  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
197194, 196, 169ovmpog 5912 . . . . . . . . . . 11  |-  ( ( ( 1st `  ( R `  k )
)  e.  ( ZZ>= `  M )  /\  ( 2nd `  ( R `  k ) )  e. 
_V  /\  <. ( ( 1st `  ( R `
 k ) )  +  1 ) ,  ( ( 1st `  ( R `  k )
) ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  e.  ( ( ZZ>= `  M
)  X.  C ) )  ->  ( ( 1st `  ( R `  k ) ) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( x ( z  e.  ( ZZ>= `  M ) ,  w  e.  C  |->  ( w 
.+  ( F `  ( z  +  1 ) ) ) ) y ) >. )
( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
198115, 118, 192, 197syl3anc 1217 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  (
( 1st `  ( R `  k )
) ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( x ( z  e.  (
ZZ>= `  M ) ,  w  e.  C  |->  ( w  .+  ( F `
 ( z  +  1 ) ) ) ) y ) >.
) ( 2nd `  ( R `  k )
) )  =  <. ( ( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.
)
199190opeq2d 3719 . . . . . . . . . 10  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  <. (
( 1st `  ( R `  k )
)  +  1 ) ,  ( ( 1st `  ( R `  k
) ) ( z  e.  ( ZZ>= `  M
) ,  w  e.  C  |->  ( w  .+  ( F `  ( z  +  1 ) ) ) ) ( 2nd `  ( R `  k
) ) ) >.  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
200185, 198, 1993eqtrd 2177 . . . . . . . . 9  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  <. ( ( 1st `  ( R `  k
) )  +  1 ) ,  ( ( 2nd `  ( R `
 k ) ) 
.+  ( F `  ( ( 1st `  ( R `  k )
)  +  1 ) ) ) >. )
201141, 153, 2003eqtr4rd 2184 . . . . . . . 8  |-  ( ( ( k  e.  om  /\ 
ph )  /\  ( R `  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. (
x  +  1 ) ,  ( y  .+  ( F `  ( x  +  1 ) ) ) >. ) ,  <. M ,  ( F `  M ) >. ) `  suc  k ) )
202201exp31 362 . . . . . . 7  |-  ( k  e.  om  ->  ( ph  ->  ( ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
)  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
203202a2d 26 . . . . . 6  |-  ( k  e.  om  ->  (
( ph  ->  ( R `
 k )  =  (frec ( ( x  e.  ( ZZ>= `  M
) ,  y  e. 
_V  |->  <. ( x  + 
1 ) ,  ( y  .+  ( F `
 ( x  + 
1 ) ) )
>. ) ,  <. M , 
( F `  M
) >. ) `  k
) )  ->  ( ph  ->  ( R `  suc  k )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  suc  k ) ) ) )
20491, 95, 99, 103, 110, 203finds 4521 . . . . 5  |-  ( n  e.  om  ->  ( ph  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) ) )
205204impcom 124 . . . 4  |-  ( (
ph  /\  n  e.  om )  ->  ( R `  n )  =  (frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <. ( x  +  1 ) ,  ( y 
.+  ( F `  ( x  +  1
) ) ) >.
) ,  <. M , 
( F `  M
) >. ) `  n
) )
20643, 87, 205eqfnfvd 5528 . . 3  |-  ( ph  ->  R  = frec ( ( x  e.  ( ZZ>= `  M ) ,  y  e.  _V  |->  <.