Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctlemf | Unicode version |
Description: Lemma for ctiunct 12373. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | |
ctiunct.sdc | DECID |
ctiunct.f | |
ctiunct.tom | |
ctiunct.tdc | DECID |
ctiunct.g | |
ctiunct.j | |
ctiunct.u | |
ctiunct.h |
Ref | Expression |
---|---|
ctiunctlemf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunct.f | . . . . . . . 8 | |
2 | 1 | adantr 274 | . . . . . . 7 |
3 | fof 5410 | . . . . . . 7 | |
4 | 2, 3 | syl 14 | . . . . . 6 |
5 | ctiunct.som | . . . . . . . 8 | |
6 | 5 | adantr 274 | . . . . . . 7 |
7 | ctiunct.sdc | . . . . . . . 8 DECID | |
8 | 7 | adantr 274 | . . . . . . 7 DECID |
9 | ctiunct.tom | . . . . . . . 8 | |
10 | 9 | adantlr 469 | . . . . . . 7 |
11 | ctiunct.tdc | . . . . . . . 8 DECID | |
12 | 11 | adantlr 469 | . . . . . . 7 DECID |
13 | ctiunct.g | . . . . . . . 8 | |
14 | 13 | adantlr 469 | . . . . . . 7 |
15 | ctiunct.j | . . . . . . . 8 | |
16 | 15 | adantr 274 | . . . . . . 7 |
17 | ctiunct.u | . . . . . . 7 | |
18 | simpr 109 | . . . . . . 7 | |
19 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu1st 12367 | . . . . . 6 |
20 | 4, 19 | ffvelrnd 5621 | . . . . 5 |
21 | fof 5410 | . . . . . . . . . . 11 | |
22 | 13, 21 | syl 14 | . . . . . . . . . 10 |
23 | 22 | ralrimiva 2539 | . . . . . . . . 9 |
24 | 23 | adantr 274 | . . . . . . . 8 |
25 | rspsbc 3033 | . . . . . . . 8 | |
26 | 20, 24, 25 | sylc 62 | . . . . . . 7 |
27 | sbcfg 5336 | . . . . . . . 8 | |
28 | 20, 27 | syl 14 | . . . . . . 7 |
29 | 26, 28 | mpbid 146 | . . . . . 6 |
30 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu2nd 12368 | . . . . . 6 |
31 | 29, 30 | ffvelrnd 5621 | . . . . 5 |
32 | csbeq1 3048 | . . . . . . 7 | |
33 | 32 | eleq2d 2236 | . . . . . 6 |
34 | 33 | rspcev 2830 | . . . . 5 |
35 | 20, 31, 34 | syl2anc 409 | . . . 4 |
36 | eliun 3870 | . . . 4 | |
37 | 35, 36 | sylibr 133 | . . 3 |
38 | nfcv 2308 | . . . 4 | |
39 | nfcsb1v 3078 | . . . 4 | |
40 | csbeq1a 3054 | . . . 4 | |
41 | 38, 39, 40 | cbviun 3903 | . . 3 |
42 | 37, 41 | eleqtrrdi 2260 | . 2 |
43 | ctiunct.h | . 2 | |
44 | 42, 43 | fmptd 5639 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 824 wceq 1343 wcel 2136 wral 2444 wrex 2445 crab 2448 wsbc 2951 csb 3045 wss 3116 ciun 3866 cmpt 4043 com 4567 cxp 4602 wf 5184 wfo 5186 wf1o 5187 cfv 5188 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fo 5194 df-fv 5196 |
This theorem is referenced by: ctiunctlemfo 12372 |
Copyright terms: Public domain | W3C validator |