| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemf | Unicode version | ||
| Description: Lemma for ctiunct 12657. (Contributed by Jim Kingdon, 28-Oct-2023.) | 
| Ref | Expression | 
|---|---|
| ctiunct.som | 
 | 
| ctiunct.sdc | 
 | 
| ctiunct.f | 
 | 
| ctiunct.tom | 
 | 
| ctiunct.tdc | 
 | 
| ctiunct.g | 
 | 
| ctiunct.j | 
 | 
| ctiunct.u | 
 | 
| ctiunct.h | 
 | 
| Ref | Expression | 
|---|---|
| ctiunctlemf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctiunct.f | 
. . . . . . . 8
 | |
| 2 | 1 | adantr 276 | 
. . . . . . 7
 | 
| 3 | fof 5480 | 
. . . . . . 7
 | |
| 4 | 2, 3 | syl 14 | 
. . . . . 6
 | 
| 5 | ctiunct.som | 
. . . . . . . 8
 | |
| 6 | 5 | adantr 276 | 
. . . . . . 7
 | 
| 7 | ctiunct.sdc | 
. . . . . . . 8
 | |
| 8 | 7 | adantr 276 | 
. . . . . . 7
 | 
| 9 | ctiunct.tom | 
. . . . . . . 8
 | |
| 10 | 9 | adantlr 477 | 
. . . . . . 7
 | 
| 11 | ctiunct.tdc | 
. . . . . . . 8
 | |
| 12 | 11 | adantlr 477 | 
. . . . . . 7
 | 
| 13 | ctiunct.g | 
. . . . . . . 8
 | |
| 14 | 13 | adantlr 477 | 
. . . . . . 7
 | 
| 15 | ctiunct.j | 
. . . . . . . 8
 | |
| 16 | 15 | adantr 276 | 
. . . . . . 7
 | 
| 17 | ctiunct.u | 
. . . . . . 7
 | |
| 18 | simpr 110 | 
. . . . . . 7
 | |
| 19 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu1st 12651 | 
. . . . . 6
 | 
| 20 | 4, 19 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 21 | fof 5480 | 
. . . . . . . . . . 11
 | |
| 22 | 13, 21 | syl 14 | 
. . . . . . . . . 10
 | 
| 23 | 22 | ralrimiva 2570 | 
. . . . . . . . 9
 | 
| 24 | 23 | adantr 276 | 
. . . . . . . 8
 | 
| 25 | rspsbc 3072 | 
. . . . . . . 8
 | |
| 26 | 20, 24, 25 | sylc 62 | 
. . . . . . 7
 | 
| 27 | sbcfg 5406 | 
. . . . . . . 8
 | |
| 28 | 20, 27 | syl 14 | 
. . . . . . 7
 | 
| 29 | 26, 28 | mpbid 147 | 
. . . . . 6
 | 
| 30 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu2nd 12652 | 
. . . . . 6
 | 
| 31 | 29, 30 | ffvelcdmd 5698 | 
. . . . 5
 | 
| 32 | csbeq1 3087 | 
. . . . . . 7
 | |
| 33 | 32 | eleq2d 2266 | 
. . . . . 6
 | 
| 34 | 33 | rspcev 2868 | 
. . . . 5
 | 
| 35 | 20, 31, 34 | syl2anc 411 | 
. . . 4
 | 
| 36 | eliun 3920 | 
. . . 4
 | |
| 37 | 35, 36 | sylibr 134 | 
. . 3
 | 
| 38 | nfcv 2339 | 
. . . 4
 | |
| 39 | nfcsb1v 3117 | 
. . . 4
 | |
| 40 | csbeq1a 3093 | 
. . . 4
 | |
| 41 | 38, 39, 40 | cbviun 3953 | 
. . 3
 | 
| 42 | 37, 41 | eleqtrrdi 2290 | 
. 2
 | 
| 43 | ctiunct.h | 
. 2
 | |
| 44 | 42, 43 | fmptd 5716 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fo 5264 df-fv 5266 | 
| This theorem is referenced by: ctiunctlemfo 12656 | 
| Copyright terms: Public domain | W3C validator |