Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ctiunctlemf | Unicode version |
Description: Lemma for ctiunct 12395. (Contributed by Jim Kingdon, 28-Oct-2023.) |
Ref | Expression |
---|---|
ctiunct.som | |
ctiunct.sdc | DECID |
ctiunct.f | |
ctiunct.tom | |
ctiunct.tdc | DECID |
ctiunct.g | |
ctiunct.j | |
ctiunct.u | |
ctiunct.h |
Ref | Expression |
---|---|
ctiunctlemf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctiunct.f | . . . . . . . 8 | |
2 | 1 | adantr 274 | . . . . . . 7 |
3 | fof 5420 | . . . . . . 7 | |
4 | 2, 3 | syl 14 | . . . . . 6 |
5 | ctiunct.som | . . . . . . . 8 | |
6 | 5 | adantr 274 | . . . . . . 7 |
7 | ctiunct.sdc | . . . . . . . 8 DECID | |
8 | 7 | adantr 274 | . . . . . . 7 DECID |
9 | ctiunct.tom | . . . . . . . 8 | |
10 | 9 | adantlr 474 | . . . . . . 7 |
11 | ctiunct.tdc | . . . . . . . 8 DECID | |
12 | 11 | adantlr 474 | . . . . . . 7 DECID |
13 | ctiunct.g | . . . . . . . 8 | |
14 | 13 | adantlr 474 | . . . . . . 7 |
15 | ctiunct.j | . . . . . . . 8 | |
16 | 15 | adantr 274 | . . . . . . 7 |
17 | ctiunct.u | . . . . . . 7 | |
18 | simpr 109 | . . . . . . 7 | |
19 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu1st 12389 | . . . . . 6 |
20 | 4, 19 | ffvelrnd 5632 | . . . . 5 |
21 | fof 5420 | . . . . . . . . . . 11 | |
22 | 13, 21 | syl 14 | . . . . . . . . . 10 |
23 | 22 | ralrimiva 2543 | . . . . . . . . 9 |
24 | 23 | adantr 274 | . . . . . . . 8 |
25 | rspsbc 3037 | . . . . . . . 8 | |
26 | 20, 24, 25 | sylc 62 | . . . . . . 7 |
27 | sbcfg 5346 | . . . . . . . 8 | |
28 | 20, 27 | syl 14 | . . . . . . 7 |
29 | 26, 28 | mpbid 146 | . . . . . 6 |
30 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu2nd 12390 | . . . . . 6 |
31 | 29, 30 | ffvelrnd 5632 | . . . . 5 |
32 | csbeq1 3052 | . . . . . . 7 | |
33 | 32 | eleq2d 2240 | . . . . . 6 |
34 | 33 | rspcev 2834 | . . . . 5 |
35 | 20, 31, 34 | syl2anc 409 | . . . 4 |
36 | eliun 3877 | . . . 4 | |
37 | 35, 36 | sylibr 133 | . . 3 |
38 | nfcv 2312 | . . . 4 | |
39 | nfcsb1v 3082 | . . . 4 | |
40 | csbeq1a 3058 | . . . 4 | |
41 | 38, 39, 40 | cbviun 3910 | . . 3 |
42 | 37, 41 | eleqtrrdi 2264 | . 2 |
43 | ctiunct.h | . 2 | |
44 | 42, 43 | fmptd 5650 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wcel 2141 wral 2448 wrex 2449 crab 2452 wsbc 2955 csb 3049 wss 3121 ciun 3873 cmpt 4050 com 4574 cxp 4609 wf 5194 wfo 5196 wf1o 5197 cfv 5198 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fo 5204 df-fv 5206 |
This theorem is referenced by: ctiunctlemfo 12394 |
Copyright terms: Public domain | W3C validator |