| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ctiunctlemf | Unicode version | ||
| Description: Lemma for ctiunct 12811. (Contributed by Jim Kingdon, 28-Oct-2023.) |
| Ref | Expression |
|---|---|
| ctiunct.som |
|
| ctiunct.sdc |
|
| ctiunct.f |
|
| ctiunct.tom |
|
| ctiunct.tdc |
|
| ctiunct.g |
|
| ctiunct.j |
|
| ctiunct.u |
|
| ctiunct.h |
|
| Ref | Expression |
|---|---|
| ctiunctlemf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctiunct.f |
. . . . . . . 8
| |
| 2 | 1 | adantr 276 |
. . . . . . 7
|
| 3 | fof 5498 |
. . . . . . 7
| |
| 4 | 2, 3 | syl 14 |
. . . . . 6
|
| 5 | ctiunct.som |
. . . . . . . 8
| |
| 6 | 5 | adantr 276 |
. . . . . . 7
|
| 7 | ctiunct.sdc |
. . . . . . . 8
| |
| 8 | 7 | adantr 276 |
. . . . . . 7
|
| 9 | ctiunct.tom |
. . . . . . . 8
| |
| 10 | 9 | adantlr 477 |
. . . . . . 7
|
| 11 | ctiunct.tdc |
. . . . . . . 8
| |
| 12 | 11 | adantlr 477 |
. . . . . . 7
|
| 13 | ctiunct.g |
. . . . . . . 8
| |
| 14 | 13 | adantlr 477 |
. . . . . . 7
|
| 15 | ctiunct.j |
. . . . . . . 8
| |
| 16 | 15 | adantr 276 |
. . . . . . 7
|
| 17 | ctiunct.u |
. . . . . . 7
| |
| 18 | simpr 110 |
. . . . . . 7
| |
| 19 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu1st 12805 |
. . . . . 6
|
| 20 | 4, 19 | ffvelcdmd 5716 |
. . . . 5
|
| 21 | fof 5498 |
. . . . . . . . . . 11
| |
| 22 | 13, 21 | syl 14 |
. . . . . . . . . 10
|
| 23 | 22 | ralrimiva 2579 |
. . . . . . . . 9
|
| 24 | 23 | adantr 276 |
. . . . . . . 8
|
| 25 | rspsbc 3081 |
. . . . . . . 8
| |
| 26 | 20, 24, 25 | sylc 62 |
. . . . . . 7
|
| 27 | sbcfg 5424 |
. . . . . . . 8
| |
| 28 | 20, 27 | syl 14 |
. . . . . . 7
|
| 29 | 26, 28 | mpbid 147 |
. . . . . 6
|
| 30 | 6, 8, 2, 10, 12, 14, 16, 17, 18 | ctiunctlemu2nd 12806 |
. . . . . 6
|
| 31 | 29, 30 | ffvelcdmd 5716 |
. . . . 5
|
| 32 | csbeq1 3096 |
. . . . . . 7
| |
| 33 | 32 | eleq2d 2275 |
. . . . . 6
|
| 34 | 33 | rspcev 2877 |
. . . . 5
|
| 35 | 20, 31, 34 | syl2anc 411 |
. . . 4
|
| 36 | eliun 3931 |
. . . 4
| |
| 37 | 35, 36 | sylibr 134 |
. . 3
|
| 38 | nfcv 2348 |
. . . 4
| |
| 39 | nfcsb1v 3126 |
. . . 4
| |
| 40 | csbeq1a 3102 |
. . . 4
| |
| 41 | 38, 39, 40 | cbviun 3964 |
. . 3
|
| 42 | 37, 41 | eleqtrrdi 2299 |
. 2
|
| 43 | ctiunct.h |
. 2
| |
| 44 | 42, 43 | fmptd 5734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fo 5277 df-fv 5279 |
| This theorem is referenced by: ctiunctlemfo 12810 |
| Copyright terms: Public domain | W3C validator |