ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema Unicode version

Theorem bezoutlema 11676
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by  A. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlema.a  |-  ( th 
->  A  e.  NN0 )
bezoutlema.b  |-  ( th 
->  B  e.  NN0 )
Assertion
Ref Expression
bezoutlema  |-  ( th 
->  [. A  /  r ]. ph )
Distinct variable groups:    A, r, s, t    B, r, s, t
Allowed substitution hints:    ph( t, s, r)    th( t, s, r)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9073 . . 3  |-  1  e.  ZZ
2 0z 9058 . . 3  |-  0  e.  ZZ
3 bezoutlema.b . . . . . . 7  |-  ( th 
->  B  e.  NN0 )
43nn0cnd 9025 . . . . . 6  |-  ( th 
->  B  e.  CC )
54mul01d 8148 . . . . 5  |-  ( th 
->  ( B  x.  0 )  =  0 )
65oveq2d 5783 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  ( B  x.  0 ) )  =  ( ( A  x.  1 )  +  0 ) )
7 bezoutlema.a . . . . . . 7  |-  ( th 
->  A  e.  NN0 )
87nn0cnd 9025 . . . . . 6  |-  ( th 
->  A  e.  CC )
9 1cnd 7775 . . . . . 6  |-  ( th 
->  1  e.  CC )
108, 9mulcld 7779 . . . . 5  |-  ( th 
->  ( A  x.  1 )  e.  CC )
1110addid1d 7904 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  0 )  =  ( A  x.  1 ) )
128mulid1d 7776 . . . 4  |-  ( th 
->  ( A  x.  1 )  =  A )
136, 11, 123eqtrrd 2175 . . 3  |-  ( th 
->  A  =  (
( A  x.  1 )  +  ( B  x.  0 ) ) )
14 oveq2 5775 . . . . . 6  |-  ( s  =  1  ->  ( A  x.  s )  =  ( A  x.  1 ) )
1514oveq1d 5782 . . . . 5  |-  ( s  =  1  ->  (
( A  x.  s
)  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  t
) ) )
1615eqeq2d 2149 . . . 4  |-  ( s  =  1  ->  ( A  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  t ) ) ) )
17 oveq2 5775 . . . . . 6  |-  ( t  =  0  ->  ( B  x.  t )  =  ( B  x.  0 ) )
1817oveq2d 5783 . . . . 5  |-  ( t  =  0  ->  (
( A  x.  1 )  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )
1918eqeq2d 2149 . . . 4  |-  ( t  =  0  ->  ( A  =  ( ( A  x.  1 )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) ) )
2016, 19rspc2ev 2799 . . 3  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )  ->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
211, 2, 13, 20mp3an12i 1319 . 2  |-  ( th 
->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
22 bezoutlema.is-bezout . . . . 5  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
23 eqeq1 2144 . . . . . 6  |-  ( r  =  A  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
24232rexbidv 2458 . . . . 5  |-  ( r  =  A  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2522, 24syl5bb 191 . . . 4  |-  ( r  =  A  ->  ( ph 
<->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
2625sbcieg 2936 . . 3  |-  ( A  e.  NN0  ->  ( [. A  /  r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
277, 26syl 14 . 2  |-  ( th 
->  ( [. A  / 
r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2821, 27mpbird 166 1  |-  ( th 
->  [. A  /  r ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   [.wsbc 2904  (class class class)co 5767   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618   NN0cn0 8970   ZZcz 9047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048
This theorem is referenced by:  bezoutlemex  11678
  Copyright terms: Public domain W3C validator