ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema Unicode version

Theorem bezoutlema 12166
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by  A. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlema.a  |-  ( th 
->  A  e.  NN0 )
bezoutlema.b  |-  ( th 
->  B  e.  NN0 )
Assertion
Ref Expression
bezoutlema  |-  ( th 
->  [. A  /  r ]. ph )
Distinct variable groups:    A, r, s, t    B, r, s, t
Allowed substitution hints:    ph( t, s, r)    th( t, s, r)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9352 . . 3  |-  1  e.  ZZ
2 0z 9337 . . 3  |-  0  e.  ZZ
3 bezoutlema.b . . . . . . 7  |-  ( th 
->  B  e.  NN0 )
43nn0cnd 9304 . . . . . 6  |-  ( th 
->  B  e.  CC )
54mul01d 8419 . . . . 5  |-  ( th 
->  ( B  x.  0 )  =  0 )
65oveq2d 5938 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  ( B  x.  0 ) )  =  ( ( A  x.  1 )  +  0 ) )
7 bezoutlema.a . . . . . . 7  |-  ( th 
->  A  e.  NN0 )
87nn0cnd 9304 . . . . . 6  |-  ( th 
->  A  e.  CC )
9 1cnd 8042 . . . . . 6  |-  ( th 
->  1  e.  CC )
108, 9mulcld 8047 . . . . 5  |-  ( th 
->  ( A  x.  1 )  e.  CC )
1110addridd 8175 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  0 )  =  ( A  x.  1 ) )
128mulridd 8043 . . . 4  |-  ( th 
->  ( A  x.  1 )  =  A )
136, 11, 123eqtrrd 2234 . . 3  |-  ( th 
->  A  =  (
( A  x.  1 )  +  ( B  x.  0 ) ) )
14 oveq2 5930 . . . . . 6  |-  ( s  =  1  ->  ( A  x.  s )  =  ( A  x.  1 ) )
1514oveq1d 5937 . . . . 5  |-  ( s  =  1  ->  (
( A  x.  s
)  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  t
) ) )
1615eqeq2d 2208 . . . 4  |-  ( s  =  1  ->  ( A  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  t ) ) ) )
17 oveq2 5930 . . . . . 6  |-  ( t  =  0  ->  ( B  x.  t )  =  ( B  x.  0 ) )
1817oveq2d 5938 . . . . 5  |-  ( t  =  0  ->  (
( A  x.  1 )  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )
1918eqeq2d 2208 . . . 4  |-  ( t  =  0  ->  ( A  =  ( ( A  x.  1 )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) ) )
2016, 19rspc2ev 2883 . . 3  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )  ->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
211, 2, 13, 20mp3an12i 1352 . 2  |-  ( th 
->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
22 bezoutlema.is-bezout . . . . 5  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
23 eqeq1 2203 . . . . . 6  |-  ( r  =  A  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
24232rexbidv 2522 . . . . 5  |-  ( r  =  A  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2522, 24bitrid 192 . . . 4  |-  ( r  =  A  ->  ( ph 
<->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
2625sbcieg 3022 . . 3  |-  ( A  e.  NN0  ->  ( [. A  /  r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
277, 26syl 14 . 2  |-  ( th 
->  ( [. A  / 
r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2821, 27mpbird 167 1  |-  ( th 
->  [. A  /  r ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   [.wsbc 2989  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882    x. cmul 7884   NN0cn0 9249   ZZcz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327
This theorem is referenced by:  bezoutlemex  12168
  Copyright terms: Public domain W3C validator