ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlema Unicode version

Theorem bezoutlema 12520
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by  A. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlema.a  |-  ( th 
->  A  e.  NN0 )
bezoutlema.b  |-  ( th 
->  B  e.  NN0 )
Assertion
Ref Expression
bezoutlema  |-  ( th 
->  [. A  /  r ]. ph )
Distinct variable groups:    A, r, s, t    B, r, s, t
Allowed substitution hints:    ph( t, s, r)    th( t, s, r)

Proof of Theorem bezoutlema
StepHypRef Expression
1 1z 9472 . . 3  |-  1  e.  ZZ
2 0z 9457 . . 3  |-  0  e.  ZZ
3 bezoutlema.b . . . . . . 7  |-  ( th 
->  B  e.  NN0 )
43nn0cnd 9424 . . . . . 6  |-  ( th 
->  B  e.  CC )
54mul01d 8539 . . . . 5  |-  ( th 
->  ( B  x.  0 )  =  0 )
65oveq2d 6017 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  ( B  x.  0 ) )  =  ( ( A  x.  1 )  +  0 ) )
7 bezoutlema.a . . . . . . 7  |-  ( th 
->  A  e.  NN0 )
87nn0cnd 9424 . . . . . 6  |-  ( th 
->  A  e.  CC )
9 1cnd 8162 . . . . . 6  |-  ( th 
->  1  e.  CC )
108, 9mulcld 8167 . . . . 5  |-  ( th 
->  ( A  x.  1 )  e.  CC )
1110addridd 8295 . . . 4  |-  ( th 
->  ( ( A  x.  1 )  +  0 )  =  ( A  x.  1 ) )
128mulridd 8163 . . . 4  |-  ( th 
->  ( A  x.  1 )  =  A )
136, 11, 123eqtrrd 2267 . . 3  |-  ( th 
->  A  =  (
( A  x.  1 )  +  ( B  x.  0 ) ) )
14 oveq2 6009 . . . . . 6  |-  ( s  =  1  ->  ( A  x.  s )  =  ( A  x.  1 ) )
1514oveq1d 6016 . . . . 5  |-  ( s  =  1  ->  (
( A  x.  s
)  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  t
) ) )
1615eqeq2d 2241 . . . 4  |-  ( s  =  1  ->  ( A  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  t ) ) ) )
17 oveq2 6009 . . . . . 6  |-  ( t  =  0  ->  ( B  x.  t )  =  ( B  x.  0 ) )
1817oveq2d 6017 . . . . 5  |-  ( t  =  0  ->  (
( A  x.  1 )  +  ( B  x.  t ) )  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )
1918eqeq2d 2241 . . . 4  |-  ( t  =  0  ->  ( A  =  ( ( A  x.  1 )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) ) )
2016, 19rspc2ev 2922 . . 3  |-  ( ( 1  e.  ZZ  /\  0  e.  ZZ  /\  A  =  ( ( A  x.  1 )  +  ( B  x.  0 ) ) )  ->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
211, 2, 13, 20mp3an12i 1375 . 2  |-  ( th 
->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
22 bezoutlema.is-bezout . . . . 5  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
23 eqeq1 2236 . . . . . 6  |-  ( r  =  A  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  A  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
24232rexbidv 2555 . . . . 5  |-  ( r  =  A  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2522, 24bitrid 192 . . . 4  |-  ( r  =  A  ->  ( ph 
<->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
2625sbcieg 3061 . . 3  |-  ( A  e.  NN0  ->  ( [. A  /  r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
277, 26syl 14 . 2  |-  ( th 
->  ( [. A  / 
r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  A  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2821, 27mpbird 167 1  |-  ( th 
->  [. A  /  r ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   E.wrex 2509   [.wsbc 3028  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002    x. cmul 8004   NN0cn0 9369   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447
This theorem is referenced by:  bezoutlemex  12522
  Copyright terms: Public domain W3C validator