ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemb Unicode version

Theorem bezoutlemb 11942
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by  B. (Contributed by Jim Kingdon, 30-Dec-2021.)
Hypotheses
Ref Expression
bezoutlema.is-bezout  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
bezoutlema.a  |-  ( th 
->  A  e.  NN0 )
bezoutlema.b  |-  ( th 
->  B  e.  NN0 )
Assertion
Ref Expression
bezoutlemb  |-  ( th 
->  [. B  /  r ]. ph )
Distinct variable groups:    A, r, s, t    B, r, s, t
Allowed substitution hints:    ph( t, s, r)    th( t, s, r)

Proof of Theorem bezoutlemb
StepHypRef Expression
1 0z 9210 . . 3  |-  0  e.  ZZ
2 1z 9225 . . 3  |-  1  e.  ZZ
3 bezoutlema.a . . . . . . 7  |-  ( th 
->  A  e.  NN0 )
43nn0cnd 9177 . . . . . 6  |-  ( th 
->  A  e.  CC )
54mul01d 8299 . . . . 5  |-  ( th 
->  ( A  x.  0 )  =  0 )
65oveq1d 5865 . . . 4  |-  ( th 
->  ( ( A  x.  0 )  +  ( B  x.  1 ) )  =  ( 0  +  ( B  x.  1 ) ) )
7 bezoutlema.b . . . . . . 7  |-  ( th 
->  B  e.  NN0 )
87nn0cnd 9177 . . . . . 6  |-  ( th 
->  B  e.  CC )
9 1cnd 7923 . . . . . 6  |-  ( th 
->  1  e.  CC )
108, 9mulcld 7927 . . . . 5  |-  ( th 
->  ( B  x.  1 )  e.  CC )
1110addid2d 8056 . . . 4  |-  ( th 
->  ( 0  +  ( B  x.  1 ) )  =  ( B  x.  1 ) )
128mulid1d 7924 . . . 4  |-  ( th 
->  ( B  x.  1 )  =  B )
136, 11, 123eqtrrd 2208 . . 3  |-  ( th 
->  B  =  (
( A  x.  0 )  +  ( B  x.  1 ) ) )
14 oveq2 5858 . . . . . 6  |-  ( s  =  0  ->  ( A  x.  s )  =  ( A  x.  0 ) )
1514oveq1d 5865 . . . . 5  |-  ( s  =  0  ->  (
( A  x.  s
)  +  ( B  x.  t ) )  =  ( ( A  x.  0 )  +  ( B  x.  t
) ) )
1615eqeq2d 2182 . . . 4  |-  ( s  =  0  ->  ( B  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  B  =  ( ( A  x.  0 )  +  ( B  x.  t ) ) ) )
17 oveq2 5858 . . . . . 6  |-  ( t  =  1  ->  ( B  x.  t )  =  ( B  x.  1 ) )
1817oveq2d 5866 . . . . 5  |-  ( t  =  1  ->  (
( A  x.  0 )  +  ( B  x.  t ) )  =  ( ( A  x.  0 )  +  ( B  x.  1 ) ) )
1918eqeq2d 2182 . . . 4  |-  ( t  =  1  ->  ( B  =  ( ( A  x.  0 )  +  ( B  x.  t ) )  <->  B  =  ( ( A  x.  0 )  +  ( B  x.  1 ) ) ) )
2016, 19rspc2ev 2849 . . 3  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ  /\  B  =  ( ( A  x.  0 )  +  ( B  x.  1 ) ) )  ->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
211, 2, 13, 20mp3an12i 1336 . 2  |-  ( th 
->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
22 bezoutlema.is-bezout . . . . 5  |-  ( ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) ) )
23 eqeq1 2177 . . . . . 6  |-  ( r  =  B  ->  (
r  =  ( ( A  x.  s )  +  ( B  x.  t ) )  <->  B  =  ( ( A  x.  s )  +  ( B  x.  t ) ) ) )
24232rexbidv 2495 . . . . 5  |-  ( r  =  B  ->  ( E. s  e.  ZZ  E. t  e.  ZZ  r  =  ( ( A  x.  s )  +  ( B  x.  t
) )  <->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2522, 24syl5bb 191 . . . 4  |-  ( r  =  B  ->  ( ph 
<->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s )  +  ( B  x.  t
) ) ) )
2625sbcieg 2987 . . 3  |-  ( B  e.  NN0  ->  ( [. B  /  r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
277, 26syl 14 . 2  |-  ( th 
->  ( [. B  / 
r ]. ph  <->  E. s  e.  ZZ  E. t  e.  ZZ  B  =  ( ( A  x.  s
)  +  ( B  x.  t ) ) ) )
2821, 27mpbird 166 1  |-  ( th 
->  [. B  /  r ]. ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   [.wsbc 2955  (class class class)co 5850   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766   NN0cn0 9122   ZZcz 9199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-ltadd 7877
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-iota 5158  df-fun 5198  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-inn 8866  df-n0 9123  df-z 9200
This theorem is referenced by:  bezoutlemex  11943
  Copyright terms: Public domain W3C validator