Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bezoutlemb | Unicode version |
Description: Lemma for Bézout's identity. The is-bezout condition is satisfied by . (Contributed by Jim Kingdon, 30-Dec-2021.) |
Ref | Expression |
---|---|
bezoutlema.is-bezout | |
bezoutlema.a | |
bezoutlema.b |
Ref | Expression |
---|---|
bezoutlemb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 9210 | . . 3 | |
2 | 1z 9225 | . . 3 | |
3 | bezoutlema.a | . . . . . . 7 | |
4 | 3 | nn0cnd 9177 | . . . . . 6 |
5 | 4 | mul01d 8299 | . . . . 5 |
6 | 5 | oveq1d 5865 | . . . 4 |
7 | bezoutlema.b | . . . . . . 7 | |
8 | 7 | nn0cnd 9177 | . . . . . 6 |
9 | 1cnd 7923 | . . . . . 6 | |
10 | 8, 9 | mulcld 7927 | . . . . 5 |
11 | 10 | addid2d 8056 | . . . 4 |
12 | 8 | mulid1d 7924 | . . . 4 |
13 | 6, 11, 12 | 3eqtrrd 2208 | . . 3 |
14 | oveq2 5858 | . . . . . 6 | |
15 | 14 | oveq1d 5865 | . . . . 5 |
16 | 15 | eqeq2d 2182 | . . . 4 |
17 | oveq2 5858 | . . . . . 6 | |
18 | 17 | oveq2d 5866 | . . . . 5 |
19 | 18 | eqeq2d 2182 | . . . 4 |
20 | 16, 19 | rspc2ev 2849 | . . 3 |
21 | 1, 2, 13, 20 | mp3an12i 1336 | . 2 |
22 | bezoutlema.is-bezout | . . . . 5 | |
23 | eqeq1 2177 | . . . . . 6 | |
24 | 23 | 2rexbidv 2495 | . . . . 5 |
25 | 22, 24 | syl5bb 191 | . . . 4 |
26 | 25 | sbcieg 2987 | . . 3 |
27 | 7, 26 | syl 14 | . 2 |
28 | 21, 27 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 wcel 2141 wrex 2449 wsbc 2955 (class class class)co 5850 cc0 7761 c1 7762 caddc 7764 cmul 7766 cn0 9122 cz 9199 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-cnex 7852 ax-resscn 7853 ax-1cn 7854 ax-1re 7855 ax-icn 7856 ax-addcl 7857 ax-addrcl 7858 ax-mulcl 7859 ax-addcom 7861 ax-mulcom 7862 ax-addass 7863 ax-mulass 7864 ax-distr 7865 ax-i2m1 7866 ax-0lt1 7867 ax-1rid 7868 ax-0id 7869 ax-rnegex 7870 ax-cnre 7872 ax-pre-ltirr 7873 ax-pre-ltwlin 7874 ax-pre-lttrn 7875 ax-pre-ltadd 7877 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-iota 5158 df-fun 5198 df-fv 5204 df-riota 5806 df-ov 5853 df-oprab 5854 df-mpo 5855 df-pnf 7943 df-mnf 7944 df-xr 7945 df-ltxr 7946 df-le 7947 df-sub 8079 df-neg 8080 df-inn 8866 df-n0 9123 df-z 9200 |
This theorem is referenced by: bezoutlemex 11943 |
Copyright terms: Public domain | W3C validator |