ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecqs Unicode version

Theorem ecqs 6563
Description: Equivalence class in terms of quotient set. (Contributed by NM, 29-Jan-1999.)
Hypothesis
Ref Expression
ecqs.1  |-  R  e. 
_V
Assertion
Ref Expression
ecqs  |-  [ A ] R  =  U. ( { A } /. R )

Proof of Theorem ecqs
StepHypRef Expression
1 df-ec 6503 . 2  |-  [ A ] R  =  ( R " { A }
)
2 ecqs.1 . . 3  |-  R  e. 
_V
3 uniqs 6559 . . 3  |-  ( R  e.  _V  ->  U. ( { A } /. R
)  =  ( R
" { A }
) )
42, 3ax-mp 5 . 2  |-  U. ( { A } /. R
)  =  ( R
" { A }
)
51, 4eqtr4i 2189 1  |-  [ A ] R  =  U. ( { A } /. R )
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   U.cuni 3789   "cima 4607   [cec 6499   /.cqs 6500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503  df-qs 6507
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator