ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 Unicode version

Theorem eceq1 6678
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3654 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21imaeq2d 5041 . 2  |-  ( A  =  B  ->  ( C " { A }
)  =  ( C
" { B }
) )
3 df-ec 6645 . 2  |-  [ A ] C  =  ( C " { A }
)
4 df-ec 6645 . 2  |-  [ B ] C  =  ( C " { B }
)
52, 3, 43eqtr4g 2265 1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {csn 3643   "cima 4696   [cec 6641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-ec 6645
This theorem is referenced by:  eceq1d  6679  ecelqsg  6698  snec  6706  qliftfun  6727  qliftfuns  6729  qliftval  6731  ecoptocl  6732  eroveu  6736  th3qlem1  6747  th3qlem2  6748  th3q  6750  dmaddpqlem  7525  nqpi  7526  1qec  7536  nqnq0  7589  nq0nn  7590  mulnnnq0  7598  addpinq1  7612  caucvgsrlemfv  7939  caucvgsr  7950  pitonnlem1  7993  axcaucvg  8048  divsfval  13275  divsfvalg  13276  qusghm  13733  znzrhval  14524
  Copyright terms: Public domain W3C validator