| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3644 |
. . 3
| |
| 2 | 1 | imaeq2d 5022 |
. 2
|
| 3 | df-ec 6622 |
. 2
| |
| 4 | df-ec 6622 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-ec 6622 |
| This theorem is referenced by: eceq1d 6656 ecelqsg 6675 snec 6683 qliftfun 6704 qliftfuns 6706 qliftval 6708 ecoptocl 6709 eroveu 6713 th3qlem1 6724 th3qlem2 6725 th3q 6727 dmaddpqlem 7490 nqpi 7491 1qec 7501 nqnq0 7554 nq0nn 7555 mulnnnq0 7563 addpinq1 7577 caucvgsrlemfv 7904 caucvgsr 7915 pitonnlem1 7958 axcaucvg 8013 divsfval 13160 divsfvalg 13161 qusghm 13618 znzrhval 14409 |
| Copyright terms: Public domain | W3C validator |