ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 Unicode version

Theorem eceq1 6536
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3587 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21imaeq2d 4946 . 2  |-  ( A  =  B  ->  ( C " { A }
)  =  ( C
" { B }
) )
3 df-ec 6503 . 2  |-  [ A ] C  =  ( C " { A }
)
4 df-ec 6503 . 2  |-  [ B ] C  =  ( C " { B }
)
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343   {csn 3576   "cima 4607   [cec 6499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-ec 6503
This theorem is referenced by:  eceq1d  6537  ecelqsg  6554  snec  6562  qliftfun  6583  qliftfuns  6585  qliftval  6587  ecoptocl  6588  eroveu  6592  th3qlem1  6603  th3qlem2  6604  th3q  6606  dmaddpqlem  7318  nqpi  7319  1qec  7329  nqnq0  7382  nq0nn  7383  mulnnnq0  7391  addpinq1  7405  caucvgsrlemfv  7732  caucvgsr  7743  pitonnlem1  7786  axcaucvg  7841
  Copyright terms: Public domain W3C validator