| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3677 |
. . 3
| |
| 2 | 1 | imaeq2d 5067 |
. 2
|
| 3 | df-ec 6680 |
. 2
| |
| 4 | df-ec 6680 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 |
| This theorem is referenced by: eceq1d 6714 ecelqsg 6733 snec 6741 qliftfun 6762 qliftfuns 6764 qliftval 6766 ecoptocl 6767 eroveu 6771 th3qlem1 6782 th3qlem2 6783 th3q 6785 dmaddpqlem 7560 nqpi 7561 1qec 7571 nqnq0 7624 nq0nn 7625 mulnnnq0 7633 addpinq1 7647 caucvgsrlemfv 7974 caucvgsr 7985 pitonnlem1 8028 axcaucvg 8083 divsfval 13356 divsfvalg 13357 qusghm 13814 znzrhval 14605 |
| Copyright terms: Public domain | W3C validator |