| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) | 
| Ref | Expression | 
|---|---|
| eceq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3633 | 
. . 3
 | |
| 2 | 1 | imaeq2d 5009 | 
. 2
 | 
| 3 | df-ec 6594 | 
. 2
 | |
| 4 | df-ec 6594 | 
. 2
 | |
| 5 | 2, 3, 4 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-cnv 4671 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-ec 6594 | 
| This theorem is referenced by: eceq1d 6628 ecelqsg 6647 snec 6655 qliftfun 6676 qliftfuns 6678 qliftval 6680 ecoptocl 6681 eroveu 6685 th3qlem1 6696 th3qlem2 6697 th3q 6699 dmaddpqlem 7444 nqpi 7445 1qec 7455 nqnq0 7508 nq0nn 7509 mulnnnq0 7517 addpinq1 7531 caucvgsrlemfv 7858 caucvgsr 7869 pitonnlem1 7912 axcaucvg 7967 divsfval 12971 divsfvalg 12972 qusghm 13412 znzrhval 14203 | 
| Copyright terms: Public domain | W3C validator |