Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version |
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
eceq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sneq 3567 | . . 3 | |
2 | 1 | imaeq2d 4921 | . 2 |
3 | df-ec 6471 | . 2 | |
4 | df-ec 6471 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2212 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1332 csn 3556 cima 4582 cec 6467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-v 2711 df-un 3102 df-in 3104 df-ss 3111 df-sn 3562 df-pr 3563 df-op 3565 df-br 3962 df-opab 4022 df-xp 4585 df-cnv 4587 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-ec 6471 |
This theorem is referenced by: eceq1d 6505 ecelqsg 6522 snec 6530 qliftfun 6551 qliftfuns 6553 qliftval 6555 ecoptocl 6556 eroveu 6560 th3qlem1 6571 th3qlem2 6572 th3q 6574 dmaddpqlem 7276 nqpi 7277 1qec 7287 nqnq0 7340 nq0nn 7341 mulnnnq0 7349 addpinq1 7363 caucvgsrlemfv 7690 caucvgsr 7701 pitonnlem1 7744 axcaucvg 7799 |
Copyright terms: Public domain | W3C validator |