ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 Unicode version

Theorem eceq1 6627
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3633 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21imaeq2d 5009 . 2  |-  ( A  =  B  ->  ( C " { A }
)  =  ( C
" { B }
) )
3 df-ec 6594 . 2  |-  [ A ] C  =  ( C " { A }
)
4 df-ec 6594 . 2  |-  [ B ] C  =  ( C " { B }
)
52, 3, 43eqtr4g 2254 1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {csn 3622   "cima 4666   [cec 6590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-ec 6594
This theorem is referenced by:  eceq1d  6628  ecelqsg  6647  snec  6655  qliftfun  6676  qliftfuns  6678  qliftval  6680  ecoptocl  6681  eroveu  6685  th3qlem1  6696  th3qlem2  6697  th3q  6699  dmaddpqlem  7444  nqpi  7445  1qec  7455  nqnq0  7508  nq0nn  7509  mulnnnq0  7517  addpinq1  7531  caucvgsrlemfv  7858  caucvgsr  7869  pitonnlem1  7912  axcaucvg  7967  divsfval  12971  divsfvalg  12972  qusghm  13412  znzrhval  14203
  Copyright terms: Public domain W3C validator