| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3654 |
. . 3
| |
| 2 | 1 | imaeq2d 5041 |
. 2
|
| 3 | df-ec 6645 |
. 2
| |
| 4 | df-ec 6645 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-ec 6645 |
| This theorem is referenced by: eceq1d 6679 ecelqsg 6698 snec 6706 qliftfun 6727 qliftfuns 6729 qliftval 6731 ecoptocl 6732 eroveu 6736 th3qlem1 6747 th3qlem2 6748 th3q 6750 dmaddpqlem 7525 nqpi 7526 1qec 7536 nqnq0 7589 nq0nn 7590 mulnnnq0 7598 addpinq1 7612 caucvgsrlemfv 7939 caucvgsr 7950 pitonnlem1 7993 axcaucvg 8048 divsfval 13275 divsfvalg 13276 qusghm 13733 znzrhval 14524 |
| Copyright terms: Public domain | W3C validator |