ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 Unicode version

Theorem eceq1 6655
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3644 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21imaeq2d 5022 . 2  |-  ( A  =  B  ->  ( C " { A }
)  =  ( C
" { B }
) )
3 df-ec 6622 . 2  |-  [ A ] C  =  ( C " { A }
)
4 df-ec 6622 . 2  |-  [ B ] C  =  ( C " { B }
)
52, 3, 43eqtr4g 2263 1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   {csn 3633   "cima 4678   [cec 6618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-ec 6622
This theorem is referenced by:  eceq1d  6656  ecelqsg  6675  snec  6683  qliftfun  6704  qliftfuns  6706  qliftval  6708  ecoptocl  6709  eroveu  6713  th3qlem1  6724  th3qlem2  6725  th3q  6727  dmaddpqlem  7490  nqpi  7491  1qec  7501  nqnq0  7554  nq0nn  7555  mulnnnq0  7563  addpinq1  7577  caucvgsrlemfv  7904  caucvgsr  7915  pitonnlem1  7958  axcaucvg  8013  divsfval  13160  divsfvalg  13161  qusghm  13618  znzrhval  14409
  Copyright terms: Public domain W3C validator