| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eceq1 | Unicode version | ||
| Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| eceq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq 3643 |
. . 3
| |
| 2 | 1 | imaeq2d 5021 |
. 2
|
| 3 | df-ec 6621 |
. 2
| |
| 4 | df-ec 6621 |
. 2
| |
| 5 | 2, 3, 4 | 3eqtr4g 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-in 3171 df-ss 3178 df-sn 3638 df-pr 3639 df-op 3641 df-br 4044 df-opab 4105 df-xp 4680 df-cnv 4682 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-ec 6621 |
| This theorem is referenced by: eceq1d 6655 ecelqsg 6674 snec 6682 qliftfun 6703 qliftfuns 6705 qliftval 6707 ecoptocl 6708 eroveu 6712 th3qlem1 6723 th3qlem2 6724 th3q 6726 dmaddpqlem 7489 nqpi 7490 1qec 7500 nqnq0 7553 nq0nn 7554 mulnnnq0 7562 addpinq1 7576 caucvgsrlemfv 7903 caucvgsr 7914 pitonnlem1 7957 axcaucvg 8012 divsfval 13131 divsfvalg 13132 qusghm 13589 znzrhval 14380 |
| Copyright terms: Public domain | W3C validator |