ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eceq1 Unicode version

Theorem eceq1 6504
Description: Equality theorem for equivalence class. (Contributed by NM, 23-Jul-1995.)
Assertion
Ref Expression
eceq1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )

Proof of Theorem eceq1
StepHypRef Expression
1 sneq 3567 . . 3  |-  ( A  =  B  ->  { A }  =  { B } )
21imaeq2d 4921 . 2  |-  ( A  =  B  ->  ( C " { A }
)  =  ( C
" { B }
) )
3 df-ec 6471 . 2  |-  [ A ] C  =  ( C " { A }
)
4 df-ec 6471 . 2  |-  [ B ] C  =  ( C " { B }
)
52, 3, 43eqtr4g 2212 1  |-  ( A  =  B  ->  [ A ] C  =  [ B ] C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1332   {csn 3556   "cima 4582   [cec 6467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-br 3962  df-opab 4022  df-xp 4585  df-cnv 4587  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-ec 6471
This theorem is referenced by:  eceq1d  6505  ecelqsg  6522  snec  6530  qliftfun  6551  qliftfuns  6553  qliftval  6555  ecoptocl  6556  eroveu  6560  th3qlem1  6571  th3qlem2  6572  th3q  6574  dmaddpqlem  7276  nqpi  7277  1qec  7287  nqnq0  7340  nq0nn  7341  mulnnnq0  7349  addpinq1  7363  caucvgsrlemfv  7690  caucvgsr  7701  pitonnlem1  7744  axcaucvg  7799
  Copyright terms: Public domain W3C validator