Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sotri2 | Unicode version |
Description: A transitivity relation. (Read B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | |
soi.2 |
Ref | Expression |
---|---|
sotri2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . 2 | |
2 | soi.2 | . . . . . . 7 | |
3 | 2 | brel 4656 | . . . . . 6 |
4 | 3 | 3ad2ant3 1010 | . . . . 5 |
5 | simp1 987 | . . . . 5 | |
6 | df-3an 970 | . . . . 5 | |
7 | 4, 5, 6 | sylanbrc 414 | . . . 4 |
8 | simp3 989 | . . . 4 | |
9 | soi.1 | . . . . 5 | |
10 | sowlin 4298 | . . . . 5 | |
11 | 9, 10 | mpan 421 | . . . 4 |
12 | 7, 8, 11 | sylc 62 | . . 3 |
13 | 12 | ord 714 | . 2 |
14 | 1, 13 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 w3a 968 wcel 2136 wss 3116 class class class wbr 3982 wor 4273 cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-iso 4275 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |