ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 Unicode version

Theorem sotri2 5038
Description: A transitivity relation. (Read  -. B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 999 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  -.  B R A )
2 soi.2 . . . . . . 7  |-  R  C_  ( S  X.  S
)
32brel 4690 . . . . . 6  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
433ad2ant3 1021 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S
) )
5 simp1 998 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A  e.  S )
6 df-3an 981 . . . . 5  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  <->  ( ( B  e.  S  /\  C  e.  S
)  /\  A  e.  S ) )
74, 5, 6sylanbrc 417 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )
8 simp3 1000 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  B R C )
9 soi.1 . . . . 5  |-  R  Or  S
10 sowlin 4332 . . . . 5  |-  ( ( R  Or  S  /\  ( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
119, 10mpan 424 . . . 4  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
127, 8, 11sylc 62 . . 3  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B R A  \/  A R C ) )
1312ord 725 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( -.  B R A  ->  A R C ) )
141, 13mpd 13 1  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    /\ w3a 979    e. wcel 2158    C_ wss 3141   class class class wbr 4015    Or wor 4307    X. cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-14 2161  ax-ext 2169  ax-sep 4133  ax-pow 4186  ax-pr 4221
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-br 4016  df-opab 4077  df-iso 4309  df-xp 4644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator