ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 Unicode version

Theorem sotri2 5126
Description: A transitivity relation. (Read  -. B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 1022 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  -.  B R A )
2 soi.2 . . . . . . 7  |-  R  C_  ( S  X.  S
)
32brel 4771 . . . . . 6  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
433ad2ant3 1044 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S
) )
5 simp1 1021 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A  e.  S )
6 df-3an 1004 . . . . 5  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  <->  ( ( B  e.  S  /\  C  e.  S
)  /\  A  e.  S ) )
74, 5, 6sylanbrc 417 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )
8 simp3 1023 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  B R C )
9 soi.1 . . . . 5  |-  R  Or  S
10 sowlin 4411 . . . . 5  |-  ( ( R  Or  S  /\  ( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
119, 10mpan 424 . . . 4  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
127, 8, 11sylc 62 . . 3  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B R A  \/  A R C ) )
1312ord 729 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( -.  B R A  ->  A R C ) )
141, 13mpd 13 1  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    /\ w3a 1002    e. wcel 2200    C_ wss 3197   class class class wbr 4083    Or wor 4386    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4084  df-opab 4146  df-iso 4388  df-xp 4725
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator