Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sotri2 | Unicode version |
Description: A transitivity relation. (Read B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | |
soi.2 |
Ref | Expression |
---|---|
sotri2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 993 | . 2 | |
2 | soi.2 | . . . . . . 7 | |
3 | 2 | brel 4663 | . . . . . 6 |
4 | 3 | 3ad2ant3 1015 | . . . . 5 |
5 | simp1 992 | . . . . 5 | |
6 | df-3an 975 | . . . . 5 | |
7 | 4, 5, 6 | sylanbrc 415 | . . . 4 |
8 | simp3 994 | . . . 4 | |
9 | soi.1 | . . . . 5 | |
10 | sowlin 4305 | . . . . 5 | |
11 | 9, 10 | mpan 422 | . . . 4 |
12 | 7, 8, 11 | sylc 62 | . . 3 |
13 | 12 | ord 719 | . 2 |
14 | 1, 13 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 w3a 973 wcel 2141 wss 3121 class class class wbr 3989 wor 4280 cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-iso 4282 df-xp 4617 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |