ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 Unicode version

Theorem sotri2 5028
Description: A transitivity relation. (Read  -. B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 998 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  -.  B R A )
2 soi.2 . . . . . . 7  |-  R  C_  ( S  X.  S
)
32brel 4680 . . . . . 6  |-  ( B R C  ->  ( B  e.  S  /\  C  e.  S )
)
433ad2ant3 1020 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S
) )
5 simp1 997 . . . . 5  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A  e.  S )
6 df-3an 980 . . . . 5  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  <->  ( ( B  e.  S  /\  C  e.  S
)  /\  A  e.  S ) )
74, 5, 6sylanbrc 417 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )
8 simp3 999 . . . 4  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  B R C )
9 soi.1 . . . . 5  |-  R  Or  S
10 sowlin 4322 . . . . 5  |-  ( ( R  Or  S  /\  ( B  e.  S  /\  C  e.  S  /\  A  e.  S
) )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
119, 10mpan 424 . . . 4  |-  ( ( B  e.  S  /\  C  e.  S  /\  A  e.  S )  ->  ( B R C  ->  ( B R A  \/  A R C ) ) )
127, 8, 11sylc 62 . . 3  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( B R A  \/  A R C ) )
1312ord 724 . 2  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  -> 
( -.  B R A  ->  A R C ) )
141, 13mpd 13 1  |-  ( ( A  e.  S  /\  -.  B R A  /\  B R C )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    /\ w3a 978    e. wcel 2148    C_ wss 3131   class class class wbr 4005    Or wor 4297    X. cxp 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-iso 4299  df-xp 4634
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator