Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sotri2 | Unicode version |
Description: A transitivity relation. (Read B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | |
soi.2 |
Ref | Expression |
---|---|
sotri2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 983 | . 2 | |
2 | soi.2 | . . . . . . 7 | |
3 | 2 | brel 4637 | . . . . . 6 |
4 | 3 | 3ad2ant3 1005 | . . . . 5 |
5 | simp1 982 | . . . . 5 | |
6 | df-3an 965 | . . . . 5 | |
7 | 4, 5, 6 | sylanbrc 414 | . . . 4 |
8 | simp3 984 | . . . 4 | |
9 | soi.1 | . . . . 5 | |
10 | sowlin 4280 | . . . . 5 | |
11 | 9, 10 | mpan 421 | . . . 4 |
12 | 7, 8, 11 | sylc 62 | . . 3 |
13 | 12 | ord 714 | . 2 |
14 | 1, 13 | mpd 13 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 w3a 963 wcel 2128 wss 3102 class class class wbr 3965 wor 4255 cxp 4583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-br 3966 df-opab 4026 df-iso 4257 df-xp 4591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |