ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  son2lpi Unicode version

Theorem son2lpi 5124
Description: A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
son2lpi  |-  -.  ( A R B  /\  B R A )

Proof of Theorem son2lpi
StepHypRef Expression
1 soi.1 . . 3  |-  R  Or  S
2 soi.2 . . 3  |-  R  C_  ( S  X.  S
)
31, 2soirri 5122 . 2  |-  -.  A R A
41, 2sotri 5123 . 2  |-  ( ( A R B  /\  B R A )  ->  A R A )
53, 4mto 666 1  |-  -.  ( A R B  /\  B R A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    C_ wss 3197   class class class wbr 4082    Or wor 4385    X. cxp 4716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-po 4386  df-iso 4387  df-xp 4724
This theorem is referenced by:  nqprdisj  7727  ltexprlemdisj  7789  recexprlemdisj  7813  caucvgprlemnkj  7849  caucvgprprlemnkltj  7872  caucvgprprlemnkeqj  7873  caucvgprprlemnjltk  7874
  Copyright terms: Public domain W3C validator