ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 GIF version

Theorem sotri2 5067
Description: A transitivity relation. (Read ¬ B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 1000 . 2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐴)
2 soi.2 . . . . . . 7 𝑅 ⊆ (𝑆 × 𝑆)
32brel 4715 . . . . . 6 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
433ad2ant3 1022 . . . . 5 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑆𝐶𝑆))
5 simp1 999 . . . . 5 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑆)
6 df-3an 982 . . . . 5 ((𝐵𝑆𝐶𝑆𝐴𝑆) ↔ ((𝐵𝑆𝐶𝑆) ∧ 𝐴𝑆))
74, 5, 6sylanbrc 417 . . . 4 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑆𝐶𝑆𝐴𝑆))
8 simp3 1001 . . . 4 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐵𝑅𝐶)
9 soi.1 . . . . 5 𝑅 Or 𝑆
10 sowlin 4355 . . . . 5 ((𝑅 Or 𝑆 ∧ (𝐵𝑆𝐶𝑆𝐴𝑆)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴𝐴𝑅𝐶)))
119, 10mpan 424 . . . 4 ((𝐵𝑆𝐶𝑆𝐴𝑆) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴𝐴𝑅𝐶)))
127, 8, 11sylc 62 . . 3 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑅𝐴𝐴𝑅𝐶))
1312ord 725 . 2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (¬ 𝐵𝑅𝐴𝐴𝑅𝐶))
141, 13mpd 13 1 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 709  w3a 980  wcel 2167  wss 3157   class class class wbr 4033   Or wor 4330   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-iso 4332  df-xp 4669
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator