![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sotri2 | GIF version |
Description: A transitivity relation. (Read ¬ B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri2 | ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1000 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐴) | |
2 | soi.2 | . . . . . . 7 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
3 | 2 | brel 4711 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 3 | 3ad2ant3 1022 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
5 | simp1 999 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴 ∈ 𝑆) | |
6 | df-3an 982 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ↔ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ 𝐴 ∈ 𝑆)) | |
7 | 4, 5, 6 | sylanbrc 417 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
8 | simp3 1001 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
9 | soi.1 | . . . . 5 ⊢ 𝑅 Or 𝑆 | |
10 | sowlin 4351 | . . . . 5 ⊢ ((𝑅 Or 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶))) | |
11 | 9, 10 | mpan 424 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶))) |
12 | 7, 8, 11 | sylc 62 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶)) |
13 | 12 | ord 725 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶)) |
14 | 1, 13 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 ∧ w3a 980 ∈ wcel 2164 ⊆ wss 3153 class class class wbr 4029 Or wor 4326 × cxp 4657 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-iso 4328 df-xp 4665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |