Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sotri2 | GIF version |
Description: A transitivity relation. (Read ¬ B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri2 | ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 988 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐴) | |
2 | soi.2 | . . . . . . 7 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
3 | 2 | brel 4656 | . . . . . 6 ⊢ (𝐵𝑅𝐶 → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
4 | 3 | 3ad2ant3 1010 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
5 | simp1 987 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴 ∈ 𝑆) | |
6 | df-3an 970 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) ↔ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ∧ 𝐴 ∈ 𝑆)) | |
7 | 4, 5, 6 | sylanbrc 414 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) |
8 | simp3 989 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐵𝑅𝐶) | |
9 | soi.1 | . . . . 5 ⊢ 𝑅 Or 𝑆 | |
10 | sowlin 4298 | . . . . 5 ⊢ ((𝑅 Or 𝑆 ∧ (𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶))) | |
11 | 9, 10 | mpan 421 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶))) |
12 | 7, 8, 11 | sylc 62 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (𝐵𝑅𝐴 ∨ 𝐴𝑅𝐶)) |
13 | 12 | ord 714 | . 2 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → (¬ 𝐵𝑅𝐴 → 𝐴𝑅𝐶)) |
14 | 1, 13 | mpd 13 | 1 ⊢ ((𝐴 ∈ 𝑆 ∧ ¬ 𝐵𝑅𝐴 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 ∧ w3a 968 ∈ wcel 2136 ⊆ wss 3116 class class class wbr 3982 Or wor 4273 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-iso 4275 df-xp 4610 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |