ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri2 GIF version

Theorem sotri2 4894
Description: A transitivity relation. (Read ¬ B < A and B < C implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)

Proof of Theorem sotri2
StepHypRef Expression
1 simp2 965 . 2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → ¬ 𝐵𝑅𝐴)
2 soi.2 . . . . . . 7 𝑅 ⊆ (𝑆 × 𝑆)
32brel 4551 . . . . . 6 (𝐵𝑅𝐶 → (𝐵𝑆𝐶𝑆))
433ad2ant3 987 . . . . 5 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑆𝐶𝑆))
5 simp1 964 . . . . 5 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑆)
6 df-3an 947 . . . . 5 ((𝐵𝑆𝐶𝑆𝐴𝑆) ↔ ((𝐵𝑆𝐶𝑆) ∧ 𝐴𝑆))
74, 5, 6sylanbrc 411 . . . 4 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑆𝐶𝑆𝐴𝑆))
8 simp3 966 . . . 4 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐵𝑅𝐶)
9 soi.1 . . . . 5 𝑅 Or 𝑆
10 sowlin 4202 . . . . 5 ((𝑅 Or 𝑆 ∧ (𝐵𝑆𝐶𝑆𝐴𝑆)) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴𝐴𝑅𝐶)))
119, 10mpan 418 . . . 4 ((𝐵𝑆𝐶𝑆𝐴𝑆) → (𝐵𝑅𝐶 → (𝐵𝑅𝐴𝐴𝑅𝐶)))
127, 8, 11sylc 62 . . 3 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (𝐵𝑅𝐴𝐴𝑅𝐶))
1312ord 696 . 2 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → (¬ 𝐵𝑅𝐴𝐴𝑅𝐶))
141, 13mpd 13 1 ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 680  w3a 945  wcel 1463  wss 3037   class class class wbr 3895   Or wor 4177   × cxp 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ral 2395  df-rex 2396  df-v 2659  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-br 3896  df-opab 3950  df-iso 4179  df-xp 4505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator