ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 Unicode version

Theorem sotri3 4893
Description: A transitivity relation. (Read A < B and  -. C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 964 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  -.  C R B )
2 soi.2 . . . . . 6  |-  R  C_  ( S  X.  S
)
32brel 4549 . . . . 5  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
433ad2ant2 984 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S
) )
5 simp1 962 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  C  e.  S )
6 df-3an 945 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S ) )
74, 5, 6sylanbrc 411 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
8 simp2 963 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R B )
9 soi.1 . . . 4  |-  R  Or  S
10 sowlin 4200 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
119, 10mpan 418 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
127, 8, 11sylc 62 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A R C  \/  C R B ) )
131, 12ecased 1308 1  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 680    /\ w3a 943    e. wcel 1461    C_ wss 3035   class class class wbr 3893    Or wor 4175    X. cxp 4495
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-rex 2394  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-iso 4177  df-xp 4503
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator