ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 Unicode version

Theorem sotri3 5002
Description: A transitivity relation. (Read A < B and  -. C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 989 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  -.  C R B )
2 soi.2 . . . . . 6  |-  R  C_  ( S  X.  S
)
32brel 4656 . . . . 5  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
433ad2ant2 1009 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S
) )
5 simp1 987 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  C  e.  S )
6 df-3an 970 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S ) )
74, 5, 6sylanbrc 414 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
8 simp2 988 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R B )
9 soi.1 . . . 4  |-  R  Or  S
10 sowlin 4298 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
119, 10mpan 421 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
127, 8, 11sylc 62 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A R C  \/  C R B ) )
131, 12ecased 1339 1  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    /\ w3a 968    e. wcel 2136    C_ wss 3116   class class class wbr 3982    Or wor 4273    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-iso 4275  df-xp 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator