ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 Unicode version

Theorem sotri3 5082
Description: A transitivity relation. (Read A < B and  -. C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1  |-  R  Or  S
soi.2  |-  R  C_  ( S  X.  S
)
Assertion
Ref Expression
sotri3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 1002 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  -.  C R B )
2 soi.2 . . . . . 6  |-  R  C_  ( S  X.  S
)
32brel 4728 . . . . 5  |-  ( A R B  ->  ( A  e.  S  /\  B  e.  S )
)
433ad2ant2 1022 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S
) )
5 simp1 1000 . . . 4  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  C  e.  S )
6 df-3an 983 . . . 4  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  <->  ( ( A  e.  S  /\  B  e.  S
)  /\  C  e.  S ) )
74, 5, 6sylanbrc 417 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )
8 simp2 1001 . . 3  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R B )
9 soi.1 . . . 4  |-  R  Or  S
10 sowlin 4368 . . . 4  |-  ( ( R  Or  S  /\  ( A  e.  S  /\  B  e.  S  /\  C  e.  S
) )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
119, 10mpan 424 . . 3  |-  ( ( A  e.  S  /\  B  e.  S  /\  C  e.  S )  ->  ( A R B  ->  ( A R C  \/  C R B ) ) )
127, 8, 11sylc 62 . 2  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  -> 
( A R C  \/  C R B ) )
131, 12ecased 1362 1  |-  ( ( C  e.  S  /\  A R B  /\  -.  C R B )  ->  A R C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    /\ w3a 981    e. wcel 2176    C_ wss 3166   class class class wbr 4045    Or wor 4343    X. cxp 4674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4046  df-opab 4107  df-iso 4345  df-xp 4682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator