ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 GIF version

Theorem sotri3 5002
Description: A transitivity relation. (Read A < B and ¬ C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 989 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵)
2 soi.2 . . . . . 6 𝑅 ⊆ (𝑆 × 𝑆)
32brel 4656 . . . . 5 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
433ad2ant2 1009 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆))
5 simp1 987 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐶𝑆)
6 df-3an 970 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
74, 5, 6sylanbrc 414 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆𝐶𝑆))
8 simp2 988 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐵)
9 soi.1 . . . 4 𝑅 Or 𝑆
10 sowlin 4298 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
119, 10mpan 421 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
127, 8, 11sylc 62 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑅𝐶𝐶𝑅𝐵))
131, 12ecased 1339 1 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 698  w3a 968  wcel 2136  wss 3116   class class class wbr 3982   Or wor 4273   × cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-iso 4275  df-xp 4610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator