ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 GIF version

Theorem sotri3 5009
Description: A transitivity relation. (Read A < B and ¬ C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 994 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵)
2 soi.2 . . . . . 6 𝑅 ⊆ (𝑆 × 𝑆)
32brel 4663 . . . . 5 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
433ad2ant2 1014 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆))
5 simp1 992 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐶𝑆)
6 df-3an 975 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
74, 5, 6sylanbrc 415 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆𝐶𝑆))
8 simp2 993 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐵)
9 soi.1 . . . 4 𝑅 Or 𝑆
10 sowlin 4305 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
119, 10mpan 422 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
127, 8, 11sylc 62 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑅𝐶𝐶𝑅𝐵))
131, 12ecased 1344 1 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 703  w3a 973  wcel 2141  wss 3121   class class class wbr 3989   Or wor 4280   × cxp 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-br 3990  df-opab 4051  df-iso 4282  df-xp 4617
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator