![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sotri3 | GIF version |
Description: A transitivity relation. (Read A < B and ¬ C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
soi.1 | ⊢ 𝑅 Or 𝑆 |
soi.2 | ⊢ 𝑅 ⊆ (𝑆 × 𝑆) |
Ref | Expression |
---|---|
sotri3 | ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 948 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵) | |
2 | soi.2 | . . . . . 6 ⊢ 𝑅 ⊆ (𝑆 × 𝑆) | |
3 | 2 | brel 4519 | . . . . 5 ⊢ (𝐴𝑅𝐵 → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
4 | 3 | 3ad2ant2 968 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) |
5 | simp1 946 | . . . 4 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐶 ∈ 𝑆) | |
6 | df-3an 929 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) ↔ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐶 ∈ 𝑆)) | |
7 | 4, 5, 6 | sylanbrc 409 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) |
8 | simp2 947 | . . 3 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐵) | |
9 | soi.1 | . . . 4 ⊢ 𝑅 Or 𝑆 | |
10 | sowlin 4171 | . . . 4 ⊢ ((𝑅 Or 𝑆 ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆)) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
11 | 9, 10 | mpan 416 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑆) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
12 | 7, 8, 11 | sylc 62 | . 2 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑅𝐶 ∨ 𝐶𝑅𝐵)) |
13 | 1, 12 | ecased 1292 | 1 ⊢ ((𝐶 ∈ 𝑆 ∧ 𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 667 ∧ w3a 927 ∈ wcel 1445 ⊆ wss 3013 class class class wbr 3867 Or wor 4146 × cxp 4465 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-iso 4148 df-xp 4473 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |