ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sotri3 GIF version

Theorem sotri3 4863
Description: A transitivity relation. (Read A < B and ¬ C < B implies A < C .) (Contributed by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
soi.1 𝑅 Or 𝑆
soi.2 𝑅 ⊆ (𝑆 × 𝑆)
Assertion
Ref Expression
sotri3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)

Proof of Theorem sotri3
StepHypRef Expression
1 simp3 948 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → ¬ 𝐶𝑅𝐵)
2 soi.2 . . . . . 6 𝑅 ⊆ (𝑆 × 𝑆)
32brel 4519 . . . . 5 (𝐴𝑅𝐵 → (𝐴𝑆𝐵𝑆))
433ad2ant2 968 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆))
5 simp1 946 . . . 4 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐶𝑆)
6 df-3an 929 . . . 4 ((𝐴𝑆𝐵𝑆𝐶𝑆) ↔ ((𝐴𝑆𝐵𝑆) ∧ 𝐶𝑆))
74, 5, 6sylanbrc 409 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑆𝐵𝑆𝐶𝑆))
8 simp2 947 . . 3 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐵)
9 soi.1 . . . 4 𝑅 Or 𝑆
10 sowlin 4171 . . . 4 ((𝑅 Or 𝑆 ∧ (𝐴𝑆𝐵𝑆𝐶𝑆)) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
119, 10mpan 416 . . 3 ((𝐴𝑆𝐵𝑆𝐶𝑆) → (𝐴𝑅𝐵 → (𝐴𝑅𝐶𝐶𝑅𝐵)))
127, 8, 11sylc 62 . 2 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → (𝐴𝑅𝐶𝐶𝑅𝐵))
131, 12ecased 1292 1 ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 667  w3a 927  wcel 1445  wss 3013   class class class wbr 3867   Or wor 4146   × cxp 4465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-br 3868  df-opab 3922  df-iso 4148  df-xp 4473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator