ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poleloe Unicode version

Theorem poleloe 4945
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )

Proof of Theorem poleloe
StepHypRef Expression
1 brun 3986 . 2  |-  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  _I  B ) )
2 ideqg 4697 . . 3  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
32orbi2d 780 . 2  |-  ( B  e.  V  ->  (
( A R B  \/  A  _I  B
)  <->  ( A R B  \/  A  =  B ) ) )
41, 3syl5bb 191 1  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481    u. cun 3073   class class class wbr 3936    _I cid 4217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553
This theorem is referenced by:  poltletr  4946
  Copyright terms: Public domain W3C validator