ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poleloe Unicode version

Theorem poleloe 5096
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4106 . 2  |-  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  _I  B ) )
2 ideqg 4842 . . 3  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
32orbi2d 792 . 2  |-  ( B  e.  V  ->  (
( A R B  \/  A  _I  B
)  <->  ( A R B  \/  A  =  B ) ) )
41, 3bitrid 192 1  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177    u. cun 3168   class class class wbr 4054    _I cid 4348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-br 4055  df-opab 4117  df-id 4353  df-xp 4694  df-rel 4695
This theorem is referenced by:  poltletr  5097
  Copyright terms: Public domain W3C validator