ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poleloe Unicode version

Theorem poleloe 5065
Description: Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Assertion
Ref Expression
poleloe  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )

Proof of Theorem poleloe
StepHypRef Expression
1 brun 4080 . 2  |-  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  _I  B ) )
2 ideqg 4813 . . 3  |-  ( B  e.  V  ->  ( A  _I  B  <->  A  =  B ) )
32orbi2d 791 . 2  |-  ( B  e.  V  ->  (
( A R B  \/  A  _I  B
)  <->  ( A R B  \/  A  =  B ) ) )
41, 3bitrid 192 1  |-  ( B  e.  V  ->  ( A ( R  u.  _I  ) B  <->  ( A R B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164    u. cun 3151   class class class wbr 4029    _I cid 4319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666
This theorem is referenced by:  poltletr  5066
  Copyright terms: Public domain W3C validator