ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abdv GIF version

Theorem ss2abdv 3268
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
StepHypRef Expression
1 ss2abdv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1898 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 ss2ab 3263 . 2 ({𝑥𝜓} ⊆ {𝑥𝜒} ↔ ∀𝑥(𝜓𝜒))
42, 3sylibr 134 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1371  {cab 2192  wss 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-in 3174  df-ss 3181
This theorem is referenced by:  ssopab2  4327  iotass  5255  imadif  5360  imain  5362  opabbrex  5999  ssoprab2  6011  tfr1onlemssrecs  6435  tfrcllemssrecs  6448  ss2ixp  6808  ptex  13146  plyss  15260
  Copyright terms: Public domain W3C validator