Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ss2abdv | GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | ss2ab 3210 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 133 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 {cab 2151 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 |
This theorem is referenced by: ssopab2 4253 iotass 5170 imadif 5268 imain 5270 opabbrex 5886 ssoprab2 5898 tfr1onlemssrecs 6307 tfrcllemssrecs 6320 ss2ixp 6677 |
Copyright terms: Public domain | W3C validator |