ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ss2abdv GIF version

Theorem ss2abdv 3215
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
Hypothesis
Ref Expression
ss2abdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ss2abdv (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem ss2abdv
StepHypRef Expression
1 ss2abdv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1862 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 ss2ab 3210 . 2 ({𝑥𝜓} ⊆ {𝑥𝜒} ↔ ∀𝑥(𝜓𝜒))
42, 3sylibr 133 1 (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  {cab 2151  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129
This theorem is referenced by:  ssopab2  4253  iotass  5170  imadif  5268  imain  5270  opabbrex  5886  ssoprab2  5898  tfr1onlemssrecs  6307  tfrcllemssrecs  6320  ss2ixp  6677
  Copyright terms: Public domain W3C validator