![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ss2abdv | GIF version |
Description: Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.) |
Ref | Expression |
---|---|
ss2abdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
ss2abdv | ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ss2abdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | ss2ab 3247 | . 2 ⊢ ({𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒} ↔ ∀𝑥(𝜓 → 𝜒)) | |
4 | 2, 3 | sylibr 134 | 1 ⊢ (𝜑 → {𝑥 ∣ 𝜓} ⊆ {𝑥 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 {cab 2179 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-in 3159 df-ss 3166 |
This theorem is referenced by: ssopab2 4306 iotass 5232 imadif 5334 imain 5336 opabbrex 5962 ssoprab2 5974 tfr1onlemssrecs 6392 tfrcllemssrecs 6405 ss2ixp 6765 ptex 12875 plyss 14884 |
Copyright terms: Public domain | W3C validator |